§3.7—Linearization \& Differentials

Linear approximation is a very easy thing to do, and once you master it, you can impress all of your friends by calculating things like $\sqrt[3]{70}$ in your head . . . about 4.125! Impressed? I'll teach you how.

Recall that if a function $f(x)$ is differentiable at $x=c$, we say it is locally linear at $x=c$. This means that as we zoom in closer and closer and closer and closer around $x=c$, the graph of $f(x)$, regardless of how curvy it is, will begin to look more and more and more and more like the tangent line at $x=c$.

This means that we can use the equation of the tangent line of $f(x)$ at $x=c$ to approximate $f(c)$ for values close to $x=c$. Let's take a look at $\sqrt[3]{70}$ and the figure below.

Example 1:

Approximate $\sqrt[3]{70}$ by using a tangent line approximation centered at $x=64$. Determine if this approximation is an over or under-approximation. Approximate $\sqrt[3]{70}$ using a secant line approximation using $x=64$ and $x=125$. Determine if this approximation is an over or under-approximation.

How to find linear approximations of $f(x)$ at $x=c$, the center to approximate $f(x)$ at $x=a$, a value near the center $x=c$.

1. Find the equation of the tangent line at the center $(c, f(c))$ in point-slope form.
2. Solve for y and rename it $L(x)$.
3. Plug in $x=a$ into $L(x)$ writing the notation VERY CAREFULLY as $f(a) \approx L(a)=\cdots$
4. If asked, determine if $L(a)$ is an over-approximation or an under approximation by examining the concavity of $f(x)$ at the center $x=c$.
a. If $f^{\prime \prime}(c)<0, f(x)$ is concave down at $x=c$ then $L(a)$ is an over-approximation
b. If $f^{\prime \prime}(c)>0, f(x)$ is concave up at $x=c$ and $L(a)$ is an under-approximation

Example 2:

Estimate the fourth root of 17 . Determine if the linearization is and over- or under-approximation.

Example 3:

Approximate 3.01^{5}. Determine if the linearization is and over- or under-approximation.

Example 4:

Approximate $\ln \left(e^{10}+5\right)$. Determine if the linearization is and over- or under-approximation.

We'll now introduce a notation and a process that will become second nature to you the rest of the year.
Recall Leibniz's notation for the derivative function: $\frac{d y}{d x}=f^{\prime}(x)$
$d y$ is called the differential of \boldsymbol{y}, and $d x$ is called the differential of \boldsymbol{x}.

Similar to Δy and Δx, which are finite, measurable quantities, the differentials denote a change in respective values, however, they are infinitely small, immeasurable differences approaching zero.

We can treat them as individual quantities and we can even solve the equation $\frac{d y}{d x}=f^{\prime}(x)$ for $d y$:

$$
d y=f^{\prime}(x) d x
$$

This is called the "differential form" of the derivative or y. Let's practice on a few.

Example 5:

Find the derivative of each function in differential form for each of the following.
(a) $y=2 t^{3}+5 t^{2}-3 t+1$
(b) $z=x^{3} \sin (3 x)$
(c) $m=e^{5 q^{2}+1}$

Here's a nice application of differentials I think you'll recognize. If Δx is small, we can say that $d y \approx \Delta y$. This is exactly what we did when we did linear approximations! In this new context, though, we can work cooler types of problems like the following.

Example 6:

A machined spherical bearing was measured with a caliper. The bearing's radius was found to be 2.3 inches with a possible error no greater than 0.0001 inches. What is the maximum possible error in the volume of the spherical bearing if we use this measurement for the radius?

