No Calculator (#1-40)

1) g(x) is shown below. Sketch the inverse on the same coordinate axes.

Is the inverse a function? Explain.

Evaluate given f(x), h(x), m(x), and p(x).

- **2)** (f+h)(8)
- 3) $(m \circ f)(28)$
- 4) $\left(\frac{f}{p}\right)$ (4)
- 5) (m(p(x))
- 6) $(m \cdot p)(x)$

- $h(x) = x^{2/3}$
- $m(x) = \frac{1}{x}$ $p(x) = x^2 x + 2$
- 7) Show that $f(x) = \sqrt[3]{x+7}$ and $g(x) = x^3 7$ are inverses of each other. Prove algebraically.

Find the inverse of the function.

8a)
$$t(x) = 2^x - 5$$

8b) $q(x) = \log_3(x-1)$

Evaluate.

9) $\log_7 \frac{1}{49}$	10) log ₄ 64
11) log ₁₂₁ 11	12) $5^{\log_5 3} + \log_2 2^5$
13) ln1+log ₅ 5	14) log _{1/2} 16
15) log ₃₂ 128	16) log ₁₅ 1
17) log ₂ 16	18) $\log_5 \frac{1}{625}$
19) log ₈₁ 27	20) $\log_{1/3} \frac{1}{9}$

Between which two consecutive integers does each expression lie?

	I .
21) log ₆ 50	22) $\log_4 \frac{1}{10}$
	10

Rewrite using change of base formula.

23) $\log_6 50$ (use common logs)	24) $\log_4 \frac{1}{10}$ (use natural logs)

Expand. Simplify if possible.

Expand. Simplify if possible.	
25) $\log_9(9x^2y)$	$26) \ln \left(\frac{ab^2}{c} \right)^4$
27) $\log_3 \sqrt{27x^4y^3}$	$28) \log_5\left(\frac{x+2}{25}\right)$

Condense. Simplify if possible.

29) $5\log x - 7\log y - 8\log z$	30) $\ln(x-4) + \ln(x)$
$31) \ 3\log_{12} x - 3\log_{12} y$	32) $\log 5 + \log 20$

Solve. Check for extraneous solutions for log equations.

$$\log(2)$$
 34) $\log_5(5x-7) = \log_5(2x+5)$

35)
$$\log_2(x-5) = 3$$

36)
$$7^{5-x} = \left(\frac{1}{49}\right)^x$$

$$37) 16^{x+2} = 64^{x+5}$$

38)
$$\log_3 x + \log_3 (x - 6) = 3$$

Sketch. State the domain and range.

$$39) \ y = 3^{x+2} - 2$$

Domain____(set notation)

Range_____(set notation)

40) $y = \log_2(x+3) - 1$

Domain_____(interval notation)

Range____(interval notation)

Calculator (#41-50)

Solve. Round to 3 decimal places.

41)
$$7^{x-5} = 72$$

42)
$$3 \cdot 10^x - 1 = 11$$

43)
$$\ln \sqrt{x+5} = 3$$

44)
$$e^{2x} = 30$$

Evaluate. Round to 3 decimal places.	
45) log ₅ 407	46) log _{1/2} 14
Set up an equation then solve.	
	nonthly, how much will be in the account after 4 years? Round to
the nearest penny.	
48) How long will it take to double your money at 7% compounded continuously? Round to three decimal places.	
49) If \$10,000 is invested at 7.3% compounded	d continuously, how much will be in the account after 12 years?
Round to the nearest penny.	
50) T(the anding belongs of an account is \$22.	155 what was the basiness belows if the imageneous had a sate of
8% compounded continuously for 7 years? Roun	155, what was the beginning balance if the investment had a rate of
Total compounded commission, you in your or income	ia to me near est penny.