No Calculator (\#1-40)

1) $g(x)$ is shown below. Sketch the inverse on the same coordinate axes.

Is the inverse a function? Explain.
Evaluate given $f(x), h(x), m(x)$, and $p(x)$.

2) $(f+h)(8)$
3) $(m \circ f)(28)$
4) $\left(\frac{f}{p}\right)$ (4)
5) $(m(p(x))$
$h(x)=x^{2 / 3} \quad m(x)=\frac{1}{x} \quad p(x)=x^{2}-x+2$
6) $(m \cdot p)(x)$
7) Show that $f(x)=\sqrt[3]{x+7}$ and $g(x)=x^{3}-7$ are inverses of each other. Prove algebraically.

Find the inverse of the function.

8 a$)$	
$t(x)=2^{x}-5$	$8 \mathrm{~b}) q(x)=\log _{3}(x-1)$

Evaluate.

9) $\log _{7} \frac{1}{49}$	10) $\log _{4} 64$
11) $\log _{121} 11$	12) $5^{\log _{5} 3}+\log _{2} 2^{5}$
13) $\ln ^{5}+\log _{5} 5$	14) $\log _{1 / 2} 16$
15) $\log _{32} 128$	16) $\log _{15} 1$
17$) \log _{2} 16$	18) $\log _{5} \frac{1}{625}$
19) $\log _{81} 27$	20) $\log _{1 / 3} \frac{1}{9}$

Between which two consecutive integers does each expression lie?
21) $\log _{6} 50$
22) $\log _{4} \frac{1}{10}$

Rewrite using change of base formula.
23) $\log _{6} 50$ (use common logs)
24) $\log _{4} \frac{1}{10}$ (use natural logs)

Expand. Simplify if possible.

25) $\log _{9}\left(9 x^{2} y\right)$	26) $\ln \left(\frac{a b^{2}}{c}\right)^{4}$
27) $\log _{3} \sqrt{27 x^{4} y^{3}}$	28) $\log _{5}\left(\frac{x+2}{25}\right)$

Condense. Simplify if possible.

29) $5 \log x-7 \log y-8 \log z$	30) $\ln (x-4)+\ln (x)$
31) $3 \log _{12} x-3 \log _{12} y$	32) $\log 5+\log 20$

Solve. Check for extraneous solutions for log equations.

33) $\log (5 x)-\log (x-1)=\log (2)$	$34) \log _{5}(5 x-7)=\log _{5}(2 x+5)$	$35) \log _{2}(x-5)=3$
36$) 7^{5-x}=\left(\frac{1}{49}\right)^{x}$	$37) 16^{x+2}=64^{x+5}$	$38) \log _{3} x+\log _{3}(x-6)=3$

Sketch. State the domain and range.
39) $y=3^{x+2}-2$

Domain \qquad (set notation)

Range \qquad
40) $y=\log _{2}(x+3)-1$

Domain \qquad (interval notation)

Range (interval notation)

Calculator (\#41-50)
Solve. Round to 3 decimal places.
41) $7^{x-5}=72$
43) $\ln \sqrt{x+5}=3$
42) $3 \cdot 10^{x}-1=11$
44) $e^{2 x}=30$

Evaluate. Round to 3 decimal places.

45) $\log _{5} 407$	46) $\log _{1 / 2} 14$

Set up an equation then solve.
47) If $\$ 10,000$ is invested at 5% compounded monthly, how much will be in the account after 4 years? Round to the nearest penny.
48) How long will it take to double your money at 7% compounded continuously? Round to three decimal places.
49) If $\$ 10,000$ is invested at 7.3% compounded continuously, how much will be in the account after 12 years? Round to the nearest penny.
50) If the ending balance of an account is $\$ 32,155$, what was the beginning balance if the investment had a rate of 8% compounded continuously for 7 years? Round to the nearest penny.

