
AP Calculus AB Chapter 1 Syllabus 2019-2020* Website: mrsdelvalle.weebly.com Remind: 81010 @delvalleAB

Day	Date	Section	Topic	Assignment
1		1.2 1.3	Evaluating Limits Numerically and Graphically; Evaluating Limits Analytically (direct substitution)	 AP Contract Student/Parent Information(google form) Pg. 72: (1, 3, 17 – 29 odd, 65, 80) Pg. 84: (11 – 43 e00)
2		1.3	Evaluating Limits Analytically	• Pg. 84: (55 – 81 odd, 94, 95, 122)
3		1.4	Quiz 1.2 & 1.3 1976 AB7/BC6 Continuity and One Sided Limits — One Sided Limits, Limits with Piecewise Functions, Absolute Value Functions and Greatest Integer Functions	• Pg. 96: (7-27 odd, 128)
4		1.5 1.6	Infinite Limits & Limits at Infinity 1982 AB 2	• 1.5-1.6 Worksheet
5		1.4	Continuity and One Sided Limits – Continuity & Intermediate Value Theorem 1976 AB 2	• Pg. 96: (43, 45, 49, 51, 57, 63, 66, 67, 91, 99, 100, 125-127)
6			Quiz 1.4 – 1.6 Ch 1 Review	Ch 1 Review Worksheet
7			Chapter 1 Test	

^{*} eoo – "Every Other Odd" * Syllabus subject to change

^{*}Odd Answers can be found at: http://calcchat.com/book/Calculus-for-AP-1e/

Ch 1 Free Response Questions

1976 AB2

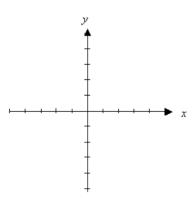
Given the two functions f and h such that $f(x) = x^3 - 3x^2 - 4x + 12$ and

$$h(x) = \begin{cases} \frac{f(x)}{x-3} & \text{for } x \neq 3\\ p & \text{for } x = 3. \end{cases}$$

- (a) Find all zeros of the function f.
- (b) Find the value of p so that the function h is continuous at x = 3. Justify your answer.
- (c) Using the value of p found in part (b), determine whether h is an even function. Justify your answer.

1976 AB7/BC6

For a differentiable function f, let f^* be the function defined by


$$f^*(x) = \lim_{h \to 0} \frac{f(x+h) - f(x-h)}{h}.$$

- (a) Determine f * (x) for $f(x) = x^2 + x$
- (b) Determine $f^*(x)$ for $f(x) = \cos x$

1982 AB2

Given that f is the function defined by $f(x) = \frac{x^3 - x}{x^3 - 4x}$.

- (a) Find the $\lim_{x\to 0} f(x)$.
- (b) Find the zeros of f.
- (c) Write an equation for each vertical and each horizontal asymptote to the graph of f.
- (d) Describe the symmetry of the graph of f.
- (e) Using the information found in parts (a), (b), (c), and (d), sketch the graph of f on the axes provided.

