4.) $y = \frac{1}{2}x^{3}$ y = 0 x = 2 $x = \sqrt[3]{2}$ $y = \sqrt[3]{3}$ y = 0 y = 2 $y = \sqrt[3]{3}$ y = 0 $y = \sqrt[3]{3}$ $y = \sqrt[3]{3}$ y

2.) $y = 2 + \sin x$ y-axis, x-axis $x = 3\pi$ $y = 3\pi$

7.)
$$y = \sqrt{\ln x}$$

$$x = e$$

$$5^2 dx = \ln x dx$$

$$5 = (\sqrt{\ln x} - D)$$

5.) $(e^{-x})^{3}dx$ $5=(e^{-x}-0)$ $5=(e^{-x}-0)$ $-\frac{1}{2}e^{-2x}$

3a.) $y=x^{2}-2$ y=3x+8 L xaxis sonicircles $5 = (3x+8)-(x^{2}-2)$ $5 = (3x+8)-(x^{2}-2)$

4.)
$$y = \frac{1}{2}x^{3}y = 0$$
 $x = 2$

b.) equil. $\triangle \perp y = x \times 1$
 $S = right - left$
 $S = 2 - 32y$
 $2y = x^{3}$

Volume: The Disk Method

- Find the volume of a solid of revolution using the disk method.
- Find the volume of a solid of revolution using the washer thod.

$$\int \pi r'(\hat{y}) = \int \pi r' dx$$

$$A = \pi r^2$$

$$V_{\text{cylinder}} = \pi r^2 h$$

$$\pi \int_{0}^{\infty} (\times + \infty)^{-1} dx$$

$$(7-4)$$
 $(x-5)$ $(5-x)$

$$(x-4)^2 = x^2 - 8x + 16$$

 $(4-x)^2 = 16 - 8x + x^2$

Volume by Revolution (Disk Method)

Example 1 Determine the volume of the solid obtained by rotating the region bounded by $y = x^2 - 4x + 5$, x = 1, x = 4, and the x-axis about the x-axis.

 $y=x^2-4x+5$ x=1, x=4, rotate about the x-axis

#3 Region: $y = x^2$, x = 0, y = 4 (1st quad) rotated about y-axis: $y = x^2$ TI (y - y) dy = x TI

Volume by Revolution (Washer Method)

$$V = \pi \int_{a}^{b} \left[R(x) \right]^{2} - \left[r(x) \right]^{2} dx$$

$$V = \pi \int_{0}^{\delta} \left[(outer - axis)^{2} - (inner - axis)^{2} \right] dx$$

$$P(x)$$

Example 2 Determine the volume of the solid obtained by rotating the portion of the region bounded by $y = \sqrt[3]{x}$ and $y = \frac{x}{4}$ that lies in the first quadrant about the y-axis.

Washer Method

$$A_{\text{washer}} = \pi R^2 - \pi r^2 = \pi \left(R^2 - r^2\right)$$

$$V_{\text{cylinder}} = \pi R^2 h - \pi r^2 h = \pi \left(R^2 - r^2\right) h$$

Washer Method

Horizontal Axis of Revolution

$$V = \pi \int_{a}^{b} \left(\left[R(x) \right]^{2} - \left[r(x) \right]^{2} \right) dx$$

Vertical Axis of Revolution

$$V = \pi \int_{a}^{b} ([R(x)]^{2} - [r(x)]^{2}) dx \qquad V = \pi \int_{a}^{b} ([R(y)]^{2} - [r(y)]^{2}) dy$$

#5 Find the volume of the solid obtained by rotating the region bounded by the curve $y = x^2$ and $y = \sqrt{x}$ about the line y = -1.

Disk or washer? Washer! To dx or dy? dx (horizontal axis of revolution)

axis of revolution)

Find the volume of the solid obtained by rotating the region bounded by $x = y^2 - 2$ and y = x about the line x = 4 disk or was kere x = 4

y-2=y x=4

AP Practice Question

be the shaded region bounded by the graphs of $y = \sqrt{x}$ and $y = e^{-3x}$ and y =

nd the volume of the solid generated when R is revolved about the horizontal y = 1.

ne region R is the base of a solid. For this solid, each cross section region R is the x-axis is a rectangle whose height is 5 times the length of its se in region R. Find the volume of this solid.

Answers to AP Question

Point of intersection

$$e^{-8\sigma} = \sqrt{x}^-$$
 at $(\mathit{T},\,\mathit{S}) = (0.238734,\,0.488604)$

(a) Area =
$$\int_{T}^{1} (\sqrt{x} - e^{-3x}) dx$$

= 0.442 or 0.443

(b) Volume
$$=\pi\int_T^1\!\left(\left(1-e^{-8x}\right)^2-\left(1-\sqrt{x}\right)^2\right)\!dx$$

$$=0.453\,\pi\text{ or }1.423\text{ or }1.424$$

(c) Length =
$$\sqrt{x} - e^{-3\sigma}$$

Height = $5(\sqrt{x} - e^{-3\sigma})$
Volume = $\int_T^1 5(\sqrt{x} - e^{-3\sigma})^2 dx = 1.554$

 Correct limits in an integral in (a), (b), or (c)

$$2:$$

$$\begin{cases}
1: integrand \\
1: answer
\end{cases}$$

$$\begin{array}{c} 2: \text{integrand} \\ <-1> \text{ reversal} \\ <-1> \text{ error with constant} \\ <-1> \text{ omits 1 in one radius} \\ <-2> \text{ other errors} \end{array}$$

$$3:$$
 $\begin{cases} 2: \text{integrand} \\ <-1> \text{incorrect but has} \\ \sqrt{x} - e^{-3x} \\ \text{as a factor} \end{cases}$

