5.1/5.3 Slope Fields \& Solving Differential Equations - Notes

- What is a Slope Field? \qquad
- Sketching a Slope Field

1. \qquad
2. \qquad
Ex 1: Sketch each slope field.
a) $\frac{d y}{d x}=2$

b) $\frac{d y}{d x}=x-1$

C) $\frac{d y}{d x}=-3 y$

d) $\frac{d y}{d x}=2 x+y$

e) $\frac{d y}{d x}=y+x y$

Ex 2: Consider the differential equation given by $\frac{d y}{d x}=\frac{x}{y}$.
a) Sketch a slope field.

b) On the slope field above, sketch a solution curve that passes through the point $(0,1)$.
c) On the slope field above, sketch a solution curve that passes through the point ($0,-1$).

- Matching Slope Fields with Differential Equations:

Ex 3: Match each differential equation with the slope field.
(A)

(B)

I. $\frac{d y}{d x}=\sin x$
II. $\frac{d y}{d x}=x-y$
(C)

(D)

III. $\frac{d y}{d x}=2-y$
IV. $\frac{d y}{d x}=x$

- Matching Slope Fields with Equations:

Ex 4: The slope field for a certain differential equation is shown below. Which of the following could be a particular solution to the differential equation?

(a) $y=\sin x$
(b) $y=\cos x$
(c) $y=x^{2}$
(d) $y=\frac{1}{6} x^{3}$
(e) $y=\ln x$

Ex 5: The slope field for a certain differential equation is shown below. Which of the following could be a particular solution to the differential equation?

(a) $y=x^{2}$
(b) $y=e^{x}$
(c) $y=e^{-x}$
(d) $y=\cos x$
(e) $y=\ln x$

Ex 6: Verify the solution of the differential equation.
a)
b)

Solution	Differential Equation
$y=e^{-2 x}$	$3 y^{\prime}+5 y=-e^{-2 x}$

Solution	Differential Equation
$y=3 \cos x+\sin x$	$y^{\prime \prime}+y^{\prime}=0$

Two Types of Solutions to Differential Equations

1. \qquad
2.

Ex 7: Find the general solution.

a) $y^{\prime}=\frac{2 x}{y}$	b) $y^{\prime}=3 y$

Ex 8: Find the particular solution.

a) $y^{\prime}=7 y,(10,1)$	b) $y^{\prime}=\frac{x}{y},(0,-1)$

C) $y^{\prime}=\frac{y}{x^{2}}, \quad(1,3)$
d) $y \sqrt{1-x^{2}} y^{\prime}-x \sqrt{1-y^{2}}=0, \quad(0,1)$

Ex 9: The rate of change of y with respect to x is proportional to the difference between x and 4. Write a differential equation.

Ex 10: The rate of change of y with respect to x varies directly with the square of y. Write a differential equation.

Ex 11:
Consider the differential equation $\frac{d y}{d x}=(y-1)^{2} \cos (\pi x)$.
(a) On the axes provided, sketch a slope field for the given differential equation at the nine points indicated. (Note: Use the axes provided in the exam booklet.)

(b) There is a horizontal line with equation $y=c$ that satisfies this differential equation. Find the value of c.

Ex 12:

Let f be a function with $f(1)=4$ such that for all points (x, y) on the graph of f the slope is given by $\frac{3 x^{2}+1}{2 y}$.
(a) Find the slope of the graph of f at the point where $x=1$.
(b) Write an equation for the line tangent to the graph of f at $x=1$ and use it to approximate $f(1.2)$.
(c) Find $f(x)$ by solving the separable differential equation $\frac{d y}{d x}=\frac{3 x^{2}+1}{2 y}$ with the initial condition $f(1)=4$.
(d) Use your solution from part (c) to find $f(1.2)$.

Ex 13:
Consider the differential equation $\frac{d y}{d x}=\frac{3-x}{y}$.
(a) Let $y=f(x)$ be the particular solution to the given differential equation for $1<x<5$ such that the line $y=-2$ is tangent to the graph of f. Find the x-coordinate of the point of tangency, and determine whether f has a local maximum, local minimum, or neither at this point. Justify your answer.
(b) Let $y=g(x)$ be the particular solution to the given differential equation for $-2<x<8$, with the initial condition $g(6)=-4$. Find $y=g(x)$.

Ex 14:

Consider the differential equation $\frac{d y}{d x}=x^{4}(y-2)$.
(a) On the axes provided, sketch a slope field for the given differential equation at the twelve points indicated.
(Note: Use the axes provided in the test booklet.)
(b) While the slope field in part (a) is drawn at only twelve points, it is defined at every point in the $x y$-plane. Describe all points in the $x y$-plane for which the slopes are negative.
(c) Find the particular solution $y=f(x)$ to the given differential equation with the initial condition $f(0)=0$.

