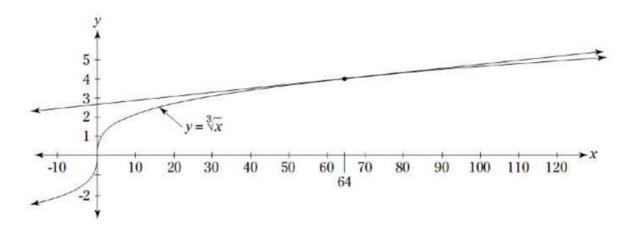
§3.7—Linearization & Differentials

Linear approximation is a very easy thing to do, and once you master it, you can impress all of your friends by calculating things like $\sqrt[3]{70}$ in your head about 4.125! Impressed? I'll teach you how.

Recall that if a function f(x) is differentiable at x = c, we say it is locally linear at x = c. This means that as we zoom in closer and closer and closer and closer around x = c, the graph of f(x), regardless of how curvy it is, will begin to look more and more and more and more like the tangent line at x = c.

This means that we can use the equation of the tangent line of f(x) at x = c to approximate f(c) for values close to x = c. Let's take a look at $\sqrt[3]{70}$ and the figure below.



Example 1:

Approximate $\sqrt[3]{70}$ by using a tangent line approximation centered at x = 64. Determine if this approximation is an over or under-approximation. Approximate $\sqrt[3]{70}$ using a secant line approximation using x = 64 and x = 125. Determine if this approximation is an over or under-approximation.

$$f(x) = \sqrt[3]{x} \qquad (64, 4)$$

$$f'(x) = \frac{1}{3} x^{-213} \qquad y - 4 = \frac{1}{48} (x - 64)$$

$$f'(64) = \frac{1}{3} (64) \qquad y - 4 = \frac{1}{48} (70 - 64)$$

$$= \frac{1}{3} \cdot \frac{1}{16} = \frac{1}{48}$$

$$y = \frac{1}{8} + 4 = 4\frac{1}{8}$$

$$y = \frac{1}{8} + 4 = \frac{1}{8}$$

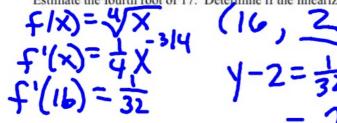
How to find linear approximations of f(x) at x = c, the center to approximate f(x) at x = a, a value near the center x = c.

- 1. Find the equation of the tangent line at the center (c, f(c)) in point-slope form.
- 2. Solve for V and rename it L(X).
- 3. Plug in x = a into L(x) writing the notation VERY CAREFULLY as $f(a) \approx L(a) =$
- If asked, determine if L(a) is an over-approximation or an under approximation by examining the concavity of f(x) at the center x = c.

- a. If f''(c) < 0, f(x) is concave down at x = c then L(a) is an over-approximation
- b. If f''(c) > 0, f(x) is concave up at x = c and L(a) is an under-approximation

Example 2:

Estimate the fourth root of 17. Determine if the linearization is and over- or under-approximation



Example 3:

Approximate 3.015. Determine if the linearization is and over- or under-approximation.

$$f(x) = X^{3}$$

 $f'(x) = 5X^{4}$
 $f'(3) = 405$

Approximate 3.01⁵. Determine if the linearization is and over- or under-approximation.

$$f(x) = X = \begin{cases} 3, 243 \\ 43 \\ 4$$

L (X)= SDX

Example 4:

Approximate $\ln(e^{10} + 5)$. Determine if the linearization is and over- or under-approximation.

$$f(x) = \frac{e^{-1/2}}{1/2}$$

$$f(x) = \frac{1}{2}$$

Approximate
$$\ln(e^{10} + 5)$$
. Determine if the linearization is and over- or under-approximation.

$$f(x) = \ln x \qquad (e^{10} + 10)$$

$$f'(x) = \frac{1}{x} \qquad (e^{10} + 10)$$

$$f'(e^{10}) = \frac{1}{e^{10}} \qquad (f'(e^{10}) + 10)$$

$$f''(e^{10}) = \frac{1}{e^{10}} \qquad (f''(e^{10}) + 10)$$