3.5 Summary of Curve Sketching - Cont.

1. The figure below shows the graph of g'(x)

a) Determine the values of x for which g has a relative extrema. JYA with $g'\!\left(x\right)$

b) Discuss the concavity. JYA with g'(x)

c) Using the information in parts a) and b) and the fact that g(-3) = 3 and g(4) = 6

sketch a graph for g(x).

Note: This is the graph of the <u>derivative</u> of f, not the graph of f.

The figure above shows the graph of f', the derivative of a function f. The domain of the function f is the set of all x such that $-3 \le x \le 3$.

- (a) For what values of x, -3 < x < 3, does f have a relative maximum? A relative minimum? Justify your answer.
- (b) For what values of x is the graph of f concave up? Justify your answer.
- (c) Use the information found in parts (a) and (b) and the fact that f(-3) = 0 to sketch a possible graph of f on the axes provided below.

```
3. Sketch the function which is increasing on (-∞, o) and (2, +∞), decreasing on (0, 2), concave up on (1, +∞), concave down on (-∞, 1), and has a relative maximum at (0, 4), relative minimum at (2, 0), point of inflection at (1, 1).
```

4. Sketch the curve with the following properties:

y-axis symmetry horizontal asymptote: y = 0 vertical asymptotes: x = -2, x = 2 increasing on (0, 2) and $(2, +\infty)$ decreasing on $(-\infty, -2)$ and (-2, 0) concave up on (-2, 2) concave down on $(-\infty, -2)$ and $(2, +\infty)$ f(0) = 2

Sketch a curve that satisfies the following conditions:

$$\frac{dy}{dx} < 0 \text{ on } (-\infty,0) \text{ and } \frac{dy}{dx} > 0 \text{ on } (0,2)$$

 $(2,\infty)$
 $\frac{d^2y}{dx^2} < 0 \text{ on } (1,\infty)$ $\frac{d^2y}{dx^2} > 0 \text{ on } (-\infty,1)$
 $f(0) = 0$ $f(2) = 4$ $f(1) = 1$

6. Sketch the function y = f(x), given that

$$f(1) = 0$$

 $f'(x) > 0$ for $x < 1$
 $f'(x) < 0$ for $x > 1$

7. Sketch y = f(x), given that

$$f(1) = -3$$

 $f''(x) > 0$ for $x < 1$
 $f''(x) < 0$ for $x > 1$

The graph of f is shown. Sketch the graphs of f' and f".

9 The graph of f is shown. Sketch the graphs of f' and f".

 The graph of f is shown. Sketch the graphs of f' and f".

