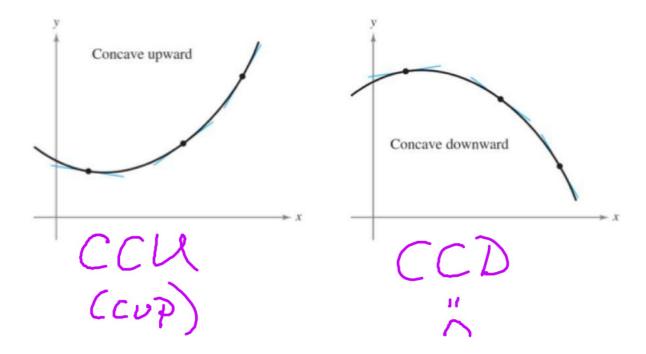
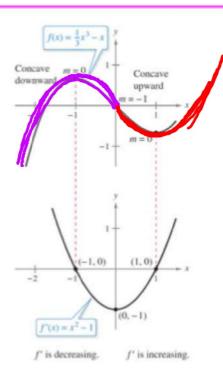
3.4 Concavity and the Second Derivative Test



Definition of Concavity

Let f be differentiable on an open interval I. The graph of f is **concave upward** on I when f' is increasing on the interval and **concave downward** on I when f' is decreasing on the interval.



f ccu ccd f' incr. dect.

$$y = x^{2}$$
 $y' = 2x$
 $y'' = 3x$
 $y'' = 6x$
 $y'' = 6x$
 $y'' = 6x$
 $y'' = 6x$
 $y'' = 6x$

ex: Determine the open intervals on which the graph of

$$f(x) = e^{-\frac{x^2}{2}}$$

is concave upward and concave downward? Justify your

ex: Determine the open intervals on which the graph of

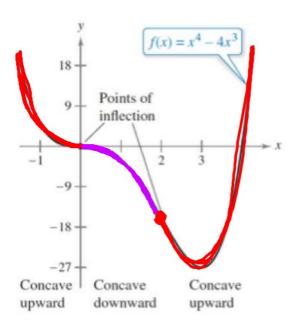
$$f(x) = \frac{x^2 + 1}{x^2 - 4}$$

is concave upward and concave downward? Justify your

answer.
$$f'(x) = \frac{-10x}{(x^2 + 4)^2}$$
 $f''(x) = \frac{10(3x^2 + 4)}{(x^2 + 4)^3}$
 $-\frac{+}{10} + \frac{-}{2} + \frac{-}{2}$
 $CCU: (-\infty, -2)U(2, \infty)$
 $CCD: (-2, 2)$

Definition of Point of Inflection

Let f be a function that is continuous on an open interval, and let c be a point in the interval. If the graph of f has a tangent line at this point (c, f(c)), then this point is a **point of inflection** of the graph of f when the concavity of f changes from upward to downward (or downward to upward) at the point.



POI REQUIREMENTS

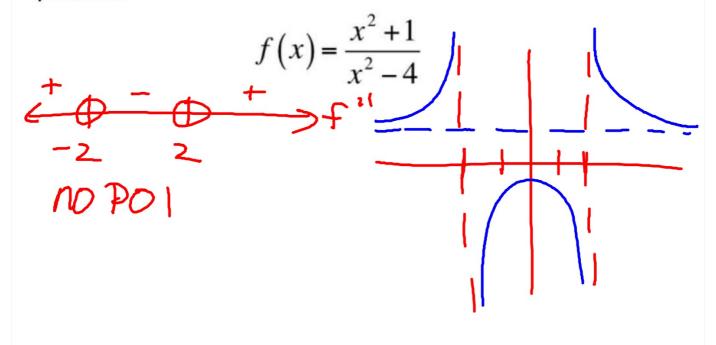
- 1. f(c) is defined
- 2. f"(c) is o or undefined
- 3. f" changes signs at x=c.

ex: Find all points of inflection on the graph of f(x), if possible.

$$f(x) = e^{-\frac{x^2}{2}}$$

POI (-1, $e^{-1/2}$) and (1, $e^{-1/2}$) because f" changes signs at these points.

ex: Find all points of inflection on the graph of f(x), if possible.



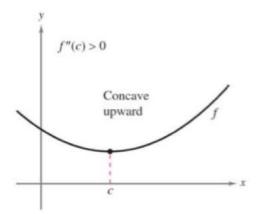
THEOREM 3.9 Second Derivative Test

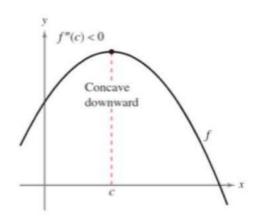
Let f be a function such that f'(c) = 0 and the second derivative of f exists on an open interval containing c.

1. If f''(c) > 0, then f has a relative minimum at (c, f(c)).

2. If f''(c) < 0, then f has a relative maximum at (c, f(c)).

If f''(c) = 0, then the test fails. That is, f may have a relative maximum, a relative minimum, or neither. In such cases, you can use the First Derivative Test.





ex: Use the 2nd Derivative Test to find all relative extrema of

$$f(x) = -3x^{5} + 5x^{3}$$

$$\frac{Zeros of f'(x)}{f'(x) = -15x^{4} + 15x^{2}} \qquad f''(x) = -60x + 30x$$

$$f''(x) = -15x^{2}(x^{2} - 1) \qquad f''(x) = -30x(2x^{2} - 1)$$

$$f''(x) = -15x^{2}(x^{2} - 1) \qquad f''(x) = 0 \text{ no rel. ext.}$$

$$x = 0, \pm 1 \qquad f''(1) < 0 \text{ rel. max}(1, 2)$$

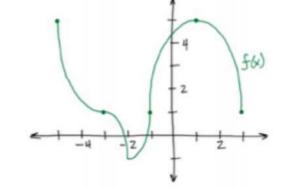
$$f''(-1) > 0 \text{ rel. min}(-1, -2)$$

ex: What can be concluded about f(x) at $x=\frac{1}{2}$ if

$$f(2)=16$$
 $f'(2)=0$
 $f''(2)=-300$
(2,16): Fel max

2.

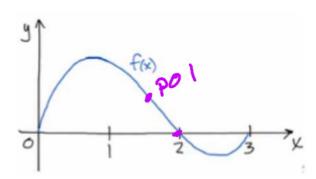
Let f be a continuous function on [-5,3] with a vertical tangent line at x=-1, horizontal tangents at x=-3 and x=1 and a cusp at x=-2. The graph of f is given at right. Which of the following properties are satisfied?



I.
$$f'(x) < 0$$
 on $(-2,1)$

- II. f has exactly 2 local extrema V
- III. f has exactly 4 critical points
 - (A) I only (B) II only (C) III only (D) II and III only (E) I, II, and III

4.



The graph of a differentiable function f(x) is shown in the figure above and has an inflection point

at $x = \frac{3}{2}$. Which of the following correctly orders f(2), f'(2), and f''(2)?

(A)
$$f(2) < f'(2) < f''(2)$$

(C)
$$f'(2) < f'(2) < f(2)$$

(D)
$$f''(2) < f(2) < f'(2)$$

(E)
$$f''(2) < f'(2) < f(2)$$

6.

Let f be the function defined by $f(x) = 2x^3 - 3x^2 - 12x + 18$. On which of the following intervals is the graph of f both increasing and concave down?

(B)
$$\left(-1,\frac{1}{2}\right)$$

(A)
$$\left(-\infty,-1\right)$$
 (B) $\left(-1,\frac{1}{2}\right)$ (C) $\left(-1,2\right)$ (D) $\left(\frac{1}{2},2\right)$ (E) $\left(2,\infty\right)$

7.

I f' decs.

If f'(x) > 0 for all x and f''(x) < 0 for all x, which of the following could be a table of values for f?

(A) $\begin{array}{c|c} x & f(y) \\ \hline -1 & 4 \\ \hline 0 & 3 \\ \hline 1 & ... \end{array}$

(B)	х	f(x)
	-1	/4
	0/	4
	1	4

(XX	x	f(x)
/	-1	4
	0	5
	1	6

x	f(x)
-1	4
0	5
1	7

(E)	x	f(x)
Y	-1	4
	0	6
	1	7

8.

(Calculator Permitted) The derivative of the function f is given by $f'(x) = x^2 \sin(x^2)$. How many points of inflection does the graph of f have on the open interval (-2,2)?

- (A) One
- (B) Two
- (C) Three
- (D) Four
- (E) Five

9.

The second derivative of a function g is given by $g''(x) = 2^{-x^2} + \cos x + x$. For -5 < x < 5, on what open intervals is the graph of g concave up?

- (A) -5 < x < -1.016 only
- (B) -1.016 < x < 5 only
- (C) 0.463 < x < 2.100 only
- (D) -5 < x < 0.463 and 2.100 < x < 5