30.) 
$$h(t) = \frac{t}{t+3}$$
  
 $h'(t) = \frac{3}{(t+3)^2}$ 

39.) 
$$f(x) = arctanx^2$$
$$f'(x) = \frac{2x}{1+x^4}$$

17.) 
$$f(t) = te^{-2t}$$
  
 $f'(t) = t(-2e^{-2t}) + e^{-2t} \cdot 1$   
 $0 = -e^{-2t}(2t-1)$   
 $t = -\frac{1}{2}$ 

76.) 
$$f(x) = \frac{4 \ln x}{x^3}$$
 X>0  
 $f'(x) = \frac{x^3 \cdot \frac{4}{x} - 4 \ln x \cdot 3x^2}{x^6}$   
 $= \frac{4x^3 - 4 \ln x \cdot 3x^2}{x^6}$   
 $= \frac{4x^3 (1 - 3 \ln x)}{x^6}$   $= \frac{1 = 3 \ln x}{4 = 6 \ln x}$ 

75.) 
$$f(x) = \chi^{2}(3x-1)^{3}$$
  
 $f'(x) = \chi^{2} \cdot 3(3x-1)^{2} \cdot 3 + (3x-1)^{3} \cdot 2x$   
 $0 = \chi(3x-1)^{2} [9x + 2(3x-1)]$   
 $0 = \chi(3x-1)^{2} [15x-2]$ 



$$(0,2)$$
  $(0,2)$   $(0,2)$ 

41.) 
$$h(x) = 5e^{x} - e^{2x}$$
 $h'(x) = 5e^{x} - 2e^{2x}$ 
 $-1 = \frac{1}{e^{x}} - \frac{1}{e^{x}}$ 
 $0 = e^{x} (5 - 2e^{x}) \ln \frac{1}{2} \ln \frac{1}{2} \ln \frac{1}{2}$ 
 $1 = \frac{1}{e^{x}} - \frac{1}{e^{x}} \ln \frac{1}{2}$ 
 $1 = \frac{1}{$ 

$$\frac{x}{-1} \frac{y}{\frac{5}{e} - \frac{1}{e^2}}$$
 $\frac{5}{25} \frac{1}{4} \times 10^{15}$ 
 $\frac{5}{2} \frac{1}{2} \frac{25}{4} \times 10^{15}$ 
 $\frac{5}{2} \frac{1}{2} \frac{25}{4} \times 10^{15}$ 

77.)  $g(x) = \sin x \cos x = \sin 2x$   $g(x) = \sin x \cos x = \frac{1}{2}(2\sin x \cos x) = \frac{1}{2}\sin x$   $g(x) = \sin x (-\sin x) + \cos x \cdot \cos x$   $O = \cos^2 x - \sin^2 x$   $\sin^2 x = \cos^2 x$   $\sin^2 x = \sin^2 x$   $\sin^2 x = \cos^2 x$   $\sin^2 x = \sin^2 x$  $\sin^2 x = \sin^2 x$ 

43.) 
$$y=e^{x} \sin x$$

$$y'=e^{x} \cos x + \sin e^{x}$$

$$y'=e^{x} (\cos x + \sin x)$$

$$\cos x + \sin x = 0$$

$$(x=3\pi)^{7} \cos x = -\sin x$$

$$-|= + \cos x$$



## 3.2 Rolle's Theorem and the Mean Value Theorem

ex: List the critical numbers of f(x).

$$f(x) = x^{4/5} (x - 5)^2$$

ex: Find the maximum and miniumum values of f(x) on the indicated interval.

$$f(x) = \sin x + \cos x, \quad \left[0, \frac{\pi}{2}\right]$$

## THEOREM 3.4 The Mean Value Theorem

If f is continuous on the closed interval [a, b] and differentiable on the open interval (a, b), then there exists a number c in (a, b) such that

The Graphical Interpretation of the Mean Value Theorem.



a) 
$$f(x) = 5 - \frac{4}{x}$$
, [1,4]  $\frac{f(4) - f(1)}{4 - 1} = \frac{4 - 1}{3}$   
Cont.  $\sqrt{\frac{4}{c^2}} = \frac{4}{c^2}$   
 $f'(x) = \frac{4}{x^2}$   
 $c = \pm 2$ 

b) 
$$f(x) = \sqrt{x-4}$$
, [4,8]  
Cont  $\sqrt{2\sqrt{x-4}} = \frac{1}{2}$   
 $\sqrt{x-4} = 1$   $C=5$   
 $\chi = 5$ 

c) 
$$f(x) = \frac{1}{x}$$
, [-1,1]  
MUT does not  
apply  
not cont. at  $x = 0$ 

d) 
$$f(x) = |x|$$
,  $[-2,2]$   
MUT does not apply  
not. diff at  $x=0$ 

e.) 
$$f(x) = \chi^{2/3}$$
 [0,8]  
Cont. 1/  
diff. 1/  
 $3\chi^{1/3} = \frac{1}{2}$   
 $3\chi^{1/3} = 4$   
 $\chi = \frac{44}{27}$   
 $\chi = \frac{44}{27}$ 

## THEOREM 3.3 Rolle's Theorem

Let f be continuous on the closed interval [a, b] and differentiable on the open interval (a, b). If f(a) = f(b), then there is at least one number c in (a, b) such that

f'(c)=0



The Graphical Interpretation of Rolle's Theorem.



possible.

a) 
$$f(x) = \cos \frac{x}{3}$$
,  $[0,6\pi]$ 

Cont  $f'(x) = 0$ 

diff  $f(x) = f(6\pi)$ 
 $f(x) = \cos \frac{x}{3}$ ,  $f'(x) = 0$ 
 $f'(x$ 

b) 
$$f(x) = x$$
, [1,20]

Rolle's Thm does not apply



Let f be the function given by  $f(x) = x^3 - 3x^2$ . What are all values of c that satisfy the conclusion of the Mean Value Theorem of differential calculus on the closed interval [0,3]?

(A) 0 only (B) 2 only (C) 3 only (D) 0 and 3 (E) 2 and 3 f'(x) = 3x - 6x = 3x(x-2)

## FR:

Let f be the function given by  $f(x) = x^3 - 7x + 6$ .

- (a) Find the zeros of f.  $\{1, 2, -3\}$
- (b) Write an equation of the line tangent to the graph of f at x = -1.  $\sqrt{-12} = -4(x+1)$
- (c) Find the number c that satisfies the conclusion of the Mean Value Theorem for f on the closed interval [1,3].