25.)
$$16y^{2} - x^{2} = 16$$

$$y = \pm \sqrt{x^{2} + 16}$$

$$y' = \pm \frac{1}{4} \cdot \pm \left(x^{2} + 16\right)^{1/2} \cdot 2x$$

$$43 \frac{1}{3x} \left(x + y - 1 = \ln \left(x^{2} + y^{2} \right) \right) \quad (1,0)$$

$$1 + \frac{dy}{dx} = \frac{2x + 2y \frac{dy}{dx}}{x^{2} + y^{2}} \quad y - D = 1 \left(x - 1 \right)$$

$$x^{2} + y^{2} + x^{2} \frac{dy}{dx} + y^{2} \frac{dy}{dx} = 2x + 2y \frac{dy}{dx}$$

$$\frac{dy}{dx} \left(x^{2} + y^{2} - 2y \right) = 2x - x^{2} - y^{2} \quad \frac{dy}{dx} = \frac{2x - x^{2} - y^{2}}{x^{2} + y^{2} - 2y}$$

$$\frac{21.)\frac{d}{dx}\left(x\arctan x=e^{\frac{\alpha}{2}}\right)\left(1,\ln \frac{\pi}{4}\right)}{\frac{1+x^{2}}{4}+\arctan x\cdot 1}=\frac{2+\pi}{4x}$$

$$\frac{\frac{1}{2}+\frac{\pi}{4}}{\frac{\pi}{4}}=\frac{2+\pi}{11}$$

11.)
$$\frac{d}{dx} \left(\sin x + 2\cos 2y = 1 \right)$$

$$\cos x - 4\sin 2y \frac{dy}{dx} = 0$$

$$\cos x = \frac{dy}{dx}$$

$$4\sin^2 y$$

$$q. \int_{\infty}^{d} \left(x e^{y} - 1Dx + 3y = 0 \right)$$

$$x \cdot e^{y} \frac{dy}{dx} + e^{y} \cdot 1 - 10 + 3 \frac{dy}{dx} = 0$$

$$\frac{dy}{dx} \left(x e^{y} + 3 \right) = \frac{10 - e^{y}}{x e^{y} + 3}$$

ex: Find
$$\frac{dy}{dx}$$
.

$$\frac{d}{dx} \left(y = \sin(xy) \right)$$

$$\frac{dy}{dx} = COS(xy) \cdot \left(x \frac{dy}{dx} + y \cdot 1 \right)$$

$$\frac{dy}{dx} = cos(xy) \cdot x \frac{dy}{dx} + y cos(xy)$$

$$\frac{dy}{dx} - \frac{y}{dx} \cdot x cos(xy) = y cos(xy)$$

$$\frac{dy}{dx} - \frac{y cos(xy)}{dx} + y cos(xy)$$

ex: If
$$x^2 + y^2 = 16 \text{find} \frac{d^2 y}{dx^2}$$
.

$$\frac{d}{dx} \left(\frac{dy}{dx} \right) = \frac{-x}{y}$$

$$\frac{d^2 y}{dx^2} = \frac{y(-i) - (-x) \frac{dy}{dx}}{y^2}$$

$$= -y - \frac{x^2}{y}$$

$$\frac{d^2 y}{dx^2} = \frac{-16}{y^3}$$

ex:
$$4x^2 + y^2 - 8x + 4y + 4 = 0$$
 $\frac{dy}{dx} = \frac{4 - 4x}{y + 2}$

a) Find the points, if any, at which the equation has a horizontal tangent line. 4-4x=0 $y^2+4y=5e+$. At M=0 x=1

b) Find the points, if any, at which the equation has a vertical tangent line

vertical tangent line.

$$y = -2 \qquad 4x^{2} - 8x = 0 \qquad (0, -2)$$

$$y = -2 \qquad 4x(x-2) = 0 \qquad (2, -2)$$

$$x = 0, 2$$

Find dy/dx:
$$y = \arcsin x$$

$$\sin y = \sin (\arcsin x)$$

$$d \sin y = x$$

$$\cos y \frac{dy}{dx} = 1$$

$$d \cos y \frac{dy}{dx} = 1$$

Steps to solving a related rate problem

- 1) Draw a picture of the physical situation. Write down the given rates and values.
- 2) Write an equation that <u>relates</u> the quantities of intereset.
- 3) Take the derivative with respect to time of both sides of the equation.
- 4) Solve for the quanitity needed.

1) Find the derivative with respect to time.

2) Air is being pumped into spherical balloon at a rate of 5 cm³/min. Find the rate of change of the radius when the diameter of the balloon is 20 cm.

$$\frac{df}{dt} = \frac{10cm}{3mr}$$

$$\frac{df}{dt} = \frac{4mr}{dt}$$

$$\frac{df}{dt} = 4mr^{2} \frac{df}{dt}$$

$$\frac{dV}{dt} = \frac{5cm^3}{min}$$

3)) A circle's area is increasing at a rate of 5 in²/min. At what rate is the radius increasing when the circumference is 40% in.

$$\frac{dA}{dt} = 5 in^2 / min$$

$$\frac{dC}{dt} = ? When C = 40\pi$$

Inference is 40 min.
$$\frac{d}{dt} \left(A = \pi \Gamma^{2} \right)$$

$$\frac{dA}{dt} = (2\pi \Gamma) \frac{dC}{dt}$$

$$5 = 40 \frac{dC}{dt}$$

$$\frac{dC}{dt} = 40 \frac{dC}{dt}$$

4) The altitude of a triangle is increasing at a rate of 1cm/min while the area of the triangle is increasing at a rate of 2cm²/min. At what rate is the base of the triangle changing when the altitude is 10cm and the area is 100cm². height-

$$\frac{dh}{dt} = 1 cm/min$$

$$\frac{d}{dt}\left(A = \frac{1}{2}bh\right)$$

$$\frac{dA}{dt} = \frac{1}{2} \left(b \frac{dh}{dt} + h \frac{db}{dt} \right)$$

$$\int = \frac{1}{2} (20 \cdot 1 + 10 \frac{db}{dt})$$

$$5^{3}$$

$$65^{2}$$

$$\alpha^{2} + b^{2} = C^{2}$$

A 5 foot ladder is leaning against the side of a house when its base starts to slide away. By the time the base is 3 feet from the house, the base is moving at a rate of 1/4 ft/sec. How fast is the top of the ladder sliding down the wall at that moment?

$$2x + 2y = 0$$

6) Two cars start at the same point. One travels south at 60km/h and the other travels west at 25km/h. At what rate is the distance between

them increasing two hours later?

$$\frac{d}{dt} \left(x^{2} + y^{2} - C^{2} \right)$$

$$\times \frac{dx}{dt} + y \frac{dy}{dt} = C \frac{dc}{dt}$$

$$(-50)(-25) + (-120)(-60) = (130) \frac{dc}{dt}$$

$$-1250 + 7200 = dc$$

$$-130 + 7200 = dc$$