JOIN YOUR AP CALCULUS CLASS SECTION

collegeboard.org/joinapclass

2nd hour: NVQ3MV

I will be checking that you joined on Friday. (1st HW grade)

To Do list:

- 1) join AP calculus with join code
- 2) Remina
- 3) Student info (google form)
- 4) Parent info (google form)
- 5) HW Day 1

1.2 Finding Limits Graphically and Numerically

- What is a limit?

The value that a function approaches as the input, x, approaches some value, y.

- 3 Ways to Find Limits:
 - 1. Graphically
 - 2. Numerically
 - 3. Analytically (Algebraically)

Numerical limit example

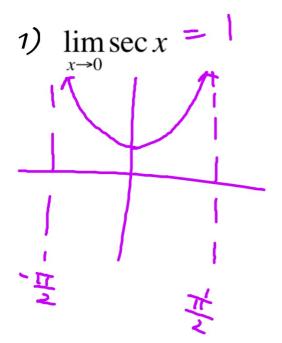
0

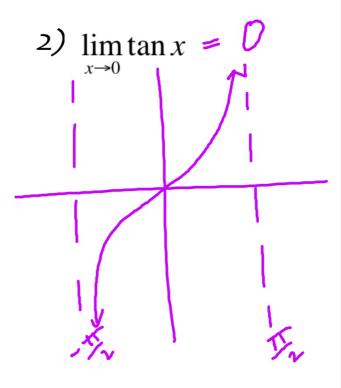
indeterminate Form

lim	x-2	=	.25
	$x^2 - 4$, &

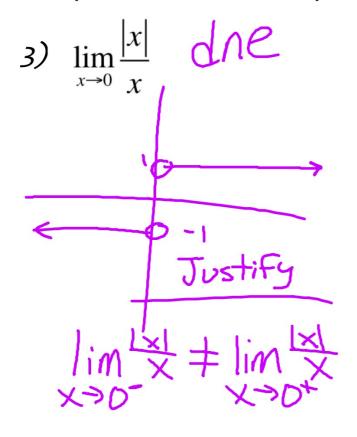
				2.001		
f(x)	.256	.251	.250	.२५९९	.249	. 240

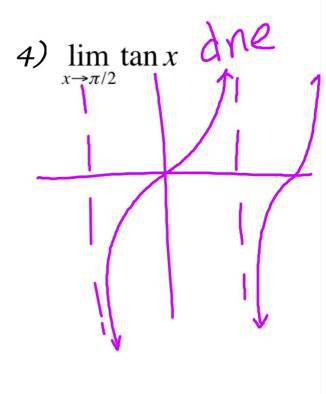
Graphical limit examples





Graphical limit examples





In general, Limits DO NOT EXIST if:

- 1. f(x) approaches two different y-values from the left and right.
- 2. f(x) oscillates between two or more y-values.
- 3. f(x) approaches infinity or negative infinity.*

 Infinity is a special case of DNE

 What to write:

If c is finite: $\lim f(x)$ DNE because

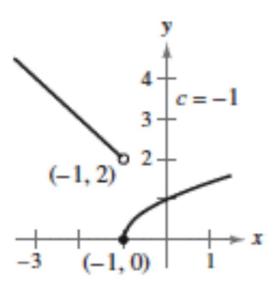
 $\lim f(x) \neq \lim f(x)$

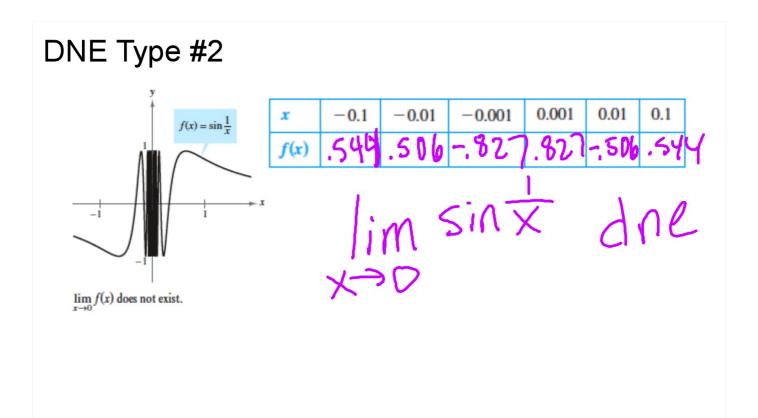
If c is infinite:

 $\lim f(x)$ DNE because

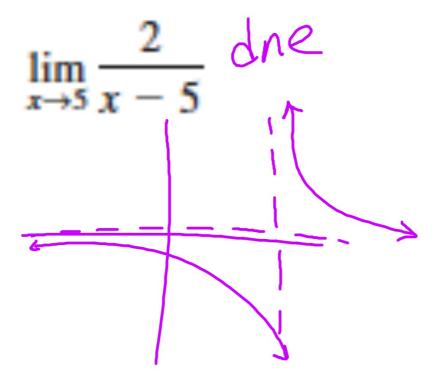
(justify in words)

DNE Type #1

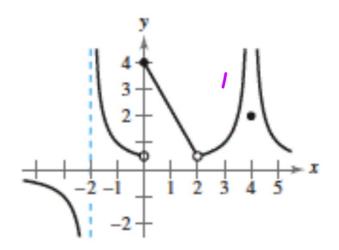




DNE Type #3



- (a) f(-2) undefined
- (b) $\lim_{x\to -2} f(x)$ dre
- (c) f(0) = 4
- (d) $\lim_{x\to 0} f(x)$ dre
- (e) f(2) und.
- (f) $\lim_{x\to 2} f(x)$
- (g) f(4) = 2
- (h) $\lim_{x\to 4} f(x) \propto \text{or dre}$



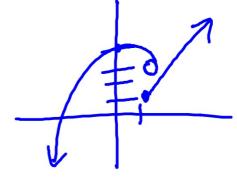
Sketching Piecewise functions

Sketch the graph of the following piecewise function.

$$|\sin g(x)| = \begin{cases} -x^2 + 4 & \text{if } x < 1 - (1) + 4 \\ 2x - 1 & \text{if } x \ge 1 \end{cases}$$

$$|\cos g(x)| = \begin{cases} -x^2 + 4 & \text{if } x < 1 - (1) + 4 \\ 2x - 1 & \text{if } x \ge 1 \end{cases}$$

$$x\rightarrow 1$$
dne
 $limg(x) \neq limg(x)$
 $x\rightarrow 1$
 $x\rightarrow 1$



Sketch the graph of the following piecewise function.

$$h(x) = \begin{cases} x+3 & \text{if } x < -2\\ x^2 & \text{if } -2 \le x < 1\\ -x+2 & \text{if } x \ge 1 \end{cases}$$

Sketch a graph of a function f that satisfies the given values. (There are many correct answers)

$$f(-2) = 0$$

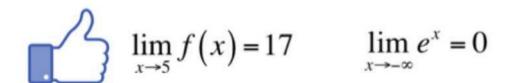
$$f(2) = 0$$

$$\lim_{x \to -2} f(x) = 0$$

 $\lim_{x\to 2} f(x)$ does not exist.

- (a) If f(2) = 4, can you conclude anything about the limit of f(x) as x approaches 2? Explain your reasoning.
 - (b) If the limit of f(x) as x approaches 2 is 4, can you conclude anything about f(2)? Explain your reasoning.

- Notation



$$\lim_{x \to 7} = 8$$

1.3: Evaluating limits Analytically (Direct Substitution)

$$\lim_{x \to 2} \frac{\sqrt{x+2}}{x-4}$$

Ex 2

$$\lim_{x \to 7} \sec\left(\frac{\pi x}{6}\right)$$

$$-\frac{2}{\sqrt{3}}$$

$$-\frac{2}{3}$$

 $\lim_{x \to 5\pi/3} \cos x$

$$\lim_{x \to c} f(x) = \frac{3}{2}$$

$$\lim_{x \to c} g(x) = \frac{1}{2}$$

$$\lim_{x \to c} g(x) = 2$$
(a) $\lim_{x \to c} [4f(x)] = 4 \cdot \frac{3}{2} = 6$
(b) $\lim_{x \to c} [f(x) + g(x)] = 2$
(c) $\lim_{x \to c} [f(x)g(x)] = \frac{3}{4}$

(b)
$$\lim_{x \to c} [f(x) + g(x)] = 2$$

(c)
$$\lim_{x \to c} [f(x)g(x)] = \frac{3}{4}$$

(d)
$$\lim_{x \to c} \frac{f(x)}{g(x)} = 3$$