Number Sets

Number Set	Symbol	Definition
Real	R	Areal number is a value that can be represented as a quantity on a continuous number line.
Rational	Q	A rational number is any quantity that can be expressed as the ratio of two integers. Ex: $4(\text{since } 4 = \frac{8}{2})$, 1.2 (since $1.2 = \frac{12}{10} = \frac{6}{5}$), $-\sqrt{9}$ (since $-\sqrt{9} = -3 = \frac{-3}{1}$, etc.
Integers	Z	The set of integers contains whole numbers, negative whole numbers and zero. Z={3, -2, -1, 0, 1, 2, 3}
Whole	W	Whole numbers are nonnegative integers W={0, 1, 2, 3}

Number Set	Symbol	Definition
Natural	N	Natural numbers are positive integers. This set is commonly referred to as the "counting" numbers set. N={1, 2, 3}
Digits	D	A digit is any number that can be found in a phone number. D={0, 1, 29}
Irrational	I	An Irrational number is any quantity that can NOT be expressed as a fraction (any nonrepeating & nonterminating decimal) Ex: π , $\sqrt{2}$
Franscendental	T	Transcendental numbers are numbers that are NOT the solution to an algebraic equation. Ex: π , ϕ (phi – the golden number), e

e ~ 2.718

ex: List all sets to which each number belongs.

c)
$$\pi(3)^2$$
 \mathbb{R} , \mathbb{T} , \mathbb{T}

Set & Interval Notation

<u>Set Notation</u> - A Set is a collection of things (usually numbers). Example: {5, 7, 11} is a set. But we can also "build" a set by describing what is in it. Here is a simple example of set-builder notation:

{ x | x>0}

x such X is greater

that than ()

ex: Express each set of numbers in set notation.

a)
$$n \le 40$$

$$\{n \mid n \leq 40\}$$

b) domain: the set of real numbers

$$\{x \mid x \in \mathbb{R}\}$$

c) range: the set of integers

$$\{y|y\in Z\}$$

E: element

d)
$$3x+4 \neq \frac{1}{2}$$

 $3x + \frac{1}{2} - 4$
 $3x + \frac{1}{2} - 4$
 $3x + \frac{1}{2} - \frac{7}{2}$
 $x + \frac{7}{6}$
e) $z < 2$ or $z \ge 5$

$$\left\{ \frac{x}{x} + \frac{7}{6} \right\}$$

<u>Interval Notation</u> - A notation for representing an interval as a pair of numbers. The numbers are the endpoints of theinterval.

*Parentheses and/or brackets are used to show whether the endpoints are excluded or included.

Parentheses, (), indicate a quantity is not included.

Brackets, [], indicate a quantity is included

When using infinity or negative infinity always use <u>parenthesis</u>.

examples of interval notation:

$$\begin{array}{c}
(1,3) \\
\left[-\frac{1}{2},0\right] \\
(-4,7]
\end{array}$$

$$\begin{array}{c}
(5,6) \\
(1,\infty) \\
(-\infty,0]
\end{array}$$

Note: NEVER use infinity symbol with set notation!!!

ex: Express each set of numbers in interval notation.

a)
$$\underbrace{-10}_{-8}$$
 $\underbrace{-6}_{-6}$ $\underbrace{-4}_{-2}$ $\underbrace{-2}_{0}$ $\underbrace{0}_{2}$

$$(-\infty, -5)$$

$$(-00,0)$$
 $U[7,00)$

f)
$$x > 30$$
 \longleftrightarrow $(30, \infty)$

g)
$$y \le 40$$
 $\left(-\infty, 40\right)$

h) the set of real numbers $\left(-\omega,\infty\right)$

i) the set of whole numbers

j) no greater than -25

$$\left(-\infty, -25\right)$$

k)
$$z \le 10 \text{ or } z > 17$$

$$(-00, 10] \cup (17, 00)$$

1)
$$x > 0$$
 and $x < 5$

m)
$$n=3$$
 3

set:
$$\{n \mid n \neq 3\}$$

interval: $(-\infty, 3) \cup (3, \infty)$