$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

$$= \frac{.4}{.6}$$

Multiplication Rule

"I wish we hadn't learned probability 'cause I don't think our odds are good."

Multiplication Rule Vocabulary

 independent - two events are said to be independent of each other if the probability that one event occurring in no way affects the probability of the other event occurring.

ex: rolling a die and flipped a coin

 dependent - two events are dependent if the outcome of the first affects the outcome of the second

ex: drawing an ace and then a 3 of hearts from a deck of cards, without replacing the first card before drawing the second

Careful!

independent ≠ mutually exclusive

dependent ≠ inclusive

ex 1: A yellow and a blue dice are rolled. Determine if the events are independent or dependent.

a) The yellow die is greater than 5 and the product is greater than 24.

Dependent

b) The yellow die shows an odd number and the blue die shows an even number.

Independent

Multiplication Addition Rule

Independent Events

$$P(A \text{ and then } B) = P(A) \cdot P(B)$$

Dependent Events

$$P(A \text{ and then } B) = P(A) \cdot P(B|A)$$

$$P(A \cap B) = P(B|A)$$

$$P(A \cap B) = P(B|A)$$

ex 2: There are 5 red, 12 white and 3 blue marbles in a bag. Find each of the probabilities.

b) P(red and red), with replacement

$$\frac{5}{20} \cdot \frac{5}{20} = \frac{1}{4} \cdot \frac{1}{4} = \frac{1}{16}$$

c) P(red and red), without replacement

$$\frac{5}{20} \cdot \frac{4}{19} = \frac{1}{19}$$

- ex 3: Two cards are drawn from a deck.
- a) What is the probability of selecting two aces when the first card is replaced?

$$\frac{4}{52} \cdot \frac{4}{52} = \frac{1}{13} \cdot \frac{1}{13} = \frac{1}{169}$$

$$= .00592$$

b) What is the probability of selecting a face card and then a 7 when the first card is not replaced?

$$\frac{12}{52} \cdot \frac{4}{51} = \frac{4}{121} = .0181$$

ex 4: Two number cubes are rolled – one yellow and one blue.

a) Find the probability that the yellow cube is greater than 5 and the product is greater than 24.

Find the probability of rolling a 5 on the yellow cube and an even number on the blue cube.

$$\frac{1}{6} \cdot \frac{1}{2} = \frac{1}{12}$$

b) Find the probability that blue cube is less than 3 and the product is 8.

ex 5: What is the probability that a randomly selected person's birthday is on January 1st? Assume it is not a leap year.

365

ex 6: What is the probability that two randomly selected people have their birthday on January 1 st. Assume it is not a leap year.

 $\frac{1}{365} \cdot \frac{1}{365} = \frac{1}{133225}$

ex 7: What is the probability that two randomly selected people have the same birthday? Assume it is not a leap year.

365

1. Evaluate.

$$\frac{\log 1 + \ln \sqrt{e}}{0 + \ln e}$$

$$0 + \ln e$$

$$\frac{1}{2} \ln e$$

2. Condense.

$$3\log_{2}a - 2\log_{2}b$$
 $\log_{2}a - \log_{2}b$
 $\log_{2}a - \log_{2}b$

3. Expand.

$$\log_{3}\left(\frac{\sqrt{a+1}}{81}\right)$$

$$\frac{1}{2}\log_{3}(a+i) - \log_{3}81$$

$$\frac{1}{2}\log_{3}(a+i) - 4$$

4. State the end behavior.

$$f(x) = -6x^{3} + 4x^{2} - 1$$

$$(x) = -6x^{3} + 4x^{2} - 1$$

5. Find the zeros.

$$f(x) = 8x^{7} + x^{4}$$

$$O = \chi^{4} (8 \chi^{3} + 1)$$

$$O = \chi^{4} (2x+1) (4\chi^{2} - 2x + 1)$$

$$\chi = O \chi = -\frac{1}{2} \qquad \chi = \frac{2 \pm \sqrt{4 - 4(4)(1)}}{2(4)}$$

$$\chi = 2 \pm 3i \sqrt{3}$$

$$\chi = 2 \pm 3i \sqrt{3}$$

6. Evaluate.

