4.4 Evaluating Logarithms 4.5 Properties of Logarithms Midterm Review Chapter 1 due next Tuesday

ex: Evaluate.

a)
$$2^5 = 32$$

b)
$$81^{3/4}$$
 27

b)
$$81^{3/4}$$
 27
c) $9^{-5/2}$ $\frac{1}{243}$
d) $-16^{5/4}$ -32

$$40 - 16^{5/4} - 32$$

ex: Solve.

a)
$$2^x = 16$$

b)
$$3^x = \frac{1}{3}$$

c)
$$71^x = 1$$

d)
$$25^x = 5$$

e)
$$27^x = 9$$
 $\frac{2}{3}$

Definition of a Logarithm

Let *b* and *y* be positive numbers with $b \ne 1$. The **logarithm of** *y* **with base** *b* is denoted by $\log_b y$ and is defined as follows:

$$\log_b y = x$$
 if and only if $b^x = y$

The expression $\log_b y$ is read as "log base b of y."

ex: Rewrite in exponential form.

a)
$$\log_3 9 = 2$$
 bases next

base
$$3^2 = 7$$

ex: Rewrite in logarithmic form.

a)
$$3^5 = 243$$

$$|09_3 243 = 5$$

b)
$$27^{-2/3} = \frac{1}{9}$$
 $100 = \frac{1}{9} = \frac{2}{3}$

a)
$$\log_4 64 = 3$$

b)
$$\log_3 81 = 4$$

c)
$$\log_5 25 = 2$$

d)
$$\log_7\left(\frac{1}{7}\right) = -$$

e)
$$\log_{13} 1 = \bigcirc$$

$$|og_{ii}| = 0$$

f)
$$\log_{25} 5 = \frac{1}{2}$$

i)
$$\log_2(-4)$$

NOT prosible

 $\chi^* = -4$

$$9) \log_5\left(\frac{1}{125}\right) = -3$$

$$i) \log_{25} \left(\frac{1}{5}\right) = -\frac{1}{2}$$

h)
$$\log_{81} 27 = \frac{3}{4}$$

k)
$$\log_{\Rightarrow} \left(\stackrel{100}{\Rightarrow} \right) = \left[\begin{array}{c} 00 \\ 0 \\ \end{array} \right] > 0, \stackrel{\Rightarrow}{\Rightarrow} 1$$

Special Logarithms

SPECIAL LOGARITHMS A **common logarithm** is a logarithm with base 10. It is denoted by \log_{10} or simply by \log . A **natural logarithm** is a logarithm with base e. It can be denoted by \log_e , but is more often denoted by \ln .

Common Logarithm

 $\log_{10} x = \log x$

Natural Logarithm

 $\log_e x = \ln x$

Most calculators have keys for evaluating common and natural logarithms.

a)
$$\log 100 = 2$$

b)
$$\log\left(\frac{1}{10}\right) = -$$

c)
$$\log .001 = \log \frac{1}{1000} = -3$$

e)
$$\ln\left(\frac{1}{e}\right) = -/$$

f)
$$\ln e^2 = 2$$

g) ln e

$$|Dg_7| = D$$

$$|ne=1$$

$$|n|=0$$

ex: Evaluate on your calculator.

a)
$$\log 16 = 1.204$$

$$b) \ln 7 = 1.946$$

Logarithms and Exponentials are INVERSES

$$f(x) = \log_b x$$

$$g(x) = b^x \begin{cases} |yy|^8 = 8 \\ |yy|^8 = 8 \end{cases}$$
ate.

ex: Evaluate.
a)
$$(f \circ g)(x) = f(b^{*}) = \log_b b^{*} = X$$

$$b)(g \circ f)(x) = g(\log_b X) = b^{\log_b X} = X$$

a)
$$7^{\log_7 x} = \chi$$

b)
$$\log_{62} 62^x = \times$$

c)
$$\log 10^x = \times$$

d)
$$e^{\ln 7} = 7$$

e)
$$\log_5 25^x = \log_5 5^{3x} = 3x$$

Dlogbx = X

REVIEW - Exponent Properties

$$b^{m} \cdot b^{n} = b^{m+n}$$

$$\frac{b^{m}}{b^{n}} = b^{m-n}$$

$$(b^{m})^{n} = b^{m}$$

Logarithm Properties

Let *b*, *m*, and *n* be positive numbers such that $b \neq 1$.

Product Property $\log_b mn = \log_b m + \log_b n$

Quotient Property $\log_b \frac{m}{n} = \log_b M - \log_b N$

Power Property $\log_b m^n = \bigcap \log_b M$

Logarithm properties are used to EXPAND and CONDENSE logarithmic expressions.

ex: Expand and simplify

a)
$$\log_3\left(\frac{abc}{9d}\right) = \log_3\Omega + \log_3b + \log_3C - (\log_39 + \log_3b)$$

= $\log_3\alpha + \log_3b + \log_3C - 2 - \log_3b$

ex: Expand.

b)
$$\log_5\left(\frac{a^2b^3}{c^4}\right) = \log_5\alpha + \log_5b^3 - \log_5c^4$$

= $2\log_5\alpha + 3\log_5b - 4\log_5c$

c)
$$\log\left(\frac{100a^2}{b^3c}\right) = \log\log + \log a - \log b - \log c$$

 $2 + 2\log a - 3\log b - \log c$

d)
$$\ln\left(\frac{1}{ab^2c^3}\right) = |n| - |n\alpha - |nb^2 - |nc^3|$$

= $-|n\alpha - 2|nb - 3|nc$

$$\log_3(a+b^2)$$
 can't be expanded expanded (SUM:)

$$1093(ab^{2})$$

 $(x+4)^{2} + x^{2} + 4^{2}$

ex: Expand.

f)
$$\log_4\left(\frac{(a+b)}{(a-b^2)}\right) = \left|\log_4(\alpha+b) - \log_4(\alpha-b^2)\right|$$

9)
$$\log_2(a^2-b^2) = |Oy_2(a+b)(a-b)|$$

= $|Oy_2(a+b)+|Oy_2(a-b)|$

ex: Expand.

h)
$$\log_3(a-b)^7 = 7 \log_3(\lambda-b)$$

i)
$$\ln \sqrt{\frac{y^3 + z}{x^3(a+1)^5}} = \frac{1}{2} \ln \left(\frac{y^3 + z}{\chi^3(\alpha+1)^5} \right)$$

= $\frac{1}{2} \ln(y^3 + z) - \frac{3}{2} \ln x - \frac{5}{2} \ln(\alpha+1)$

ex: Condense.

a)
$$2\log_5 a - 3\log_5 b + 4\log_5(c+d)$$

 $\log_5 a - \log_5 b^3 + \log_5(c+d)$
 $\log_5 a - \log_5 b^3 + \log_5(c+d)$
 $\log_5 a - \log_5 b^3 + \log_5(c+d)$

ex: Condense.

b)
$$\frac{1}{2}\log x + \frac{3}{2}\log y - 10\log z$$

$$|\log x|^{2} + |\log y|^{2} - |\log z|$$

$$|\log \left(\frac{x^{1/2}y^{1/2}}{z^{1/2}}\right) \text{ or } |\log \left(\frac{\sqrt{x}y^{3}}{z^{1/2}}\right)$$

ex: Condense.

c)
$$-3\log x - 4\log y - \frac{2}{3}\log z$$

$$109\left(\frac{1}{x^3y^4z^{13}}\right)$$