7.2 Arithmetic Sequences and Series

*See printout.

Definition of A Sequence

Sequences

A **sequence** is a function whose domain is a set of consecutive integers. If a domain is not specified, it is understood that the domain starts with 1. The values in the range are called the **terms** of the sequence.

Domain: 1 2 3 4 ... n The relative position of each term

Range: a_1 a_2 a_3 a_4 ... a_n Terms of the sequence

A *finite sequence* has a limited number of terms. An *infinite sequence* continues without stopping.

Finite sequence: 2, 4, 6, 8 Infinite sequence: 2, 4, 6, 8, ...

A sequence can be specified by an equation, or *rule*. For example, both sequences above can be described by the rule $a_n = 2n$

Definition of A Series

Series

When the terms of a sequence are added together, the resulting expression is a series. A series can be finite or infinite.

Finite series: 2+4+6+8 Infinite series: $2+4+6+8+\cdots$

*In other words, a series is the sum of a sequence.

Notation

Types of Sequences & Series

- Arithmetic
- Geometric
- etc.

Rule

A rule is a formula used to generate the terms of a sequence or series

Rules can be explicit or recursive. For example:

$$\alpha_2 = \alpha_1 - 2$$

 $a_2 = a_1 - 2$ $\sum_{i=1}^{n-2} previous + erm$

a)
$$a_n = 7n - 1$$
 (explicit)
 $a_1 = 7n - 1$ (explicit)

b)
$$a_1 = 3$$
, $a_n = a_{n-1} - 2$ (rearsive)

 $a_2 = a_{2-1} - 2 = 3 - 2 = 1$
 $a_3 = a_{3-1} - 2 = 1 - 2 = -1$
 $a_4 = a_{4-1} - 2 = -1 - 2 = -3$

Arithmetic Sequences

In an **arithmetic sequence**, the difference of consecutive terms is constant. This constant difference is called the **common difference** and is denoted by d.

ex: Determine if the sequences is arithmetic. If so, identify the common difference.

a) 1, 2, 3, 4, 5 ...
$$e \le d = 1$$

$$\Omega_{1} = 1 - 2n$$

$$\Omega_{1} = -1$$

$$\Omega_{2} =$$

$$\Omega_{3} =$$

$$\Omega_{4} =$$

$$\Omega_{5} =$$

$$\Omega_{7} =$$

ex: Write the 1st 5 terms of the sequence and sketch the graph.

$$a_1 = -1$$

$$a_2 = -3$$

$$\vdots$$

$$a_5 = -9$$

Writing Explicit Rules for Arithmetic Sequences/Series

*Since arithmetic sequences have a linear pattern, the explicit rule is linear!

Recall Point-Slope:
$$y - y_1 = m(x - x_1)$$

Remember:

$$n = x$$
 $a_n = y$
 $d = m$

Explicit Rule: $a_n - a_\# = d(n - n_\#)$

ex: Write an explicit rule for the arithmetic sequence. $\Omega_{\Lambda} - \Omega_{\pm \pm} = \partial_{\lambda} \left(\Lambda - \Lambda_{\pm \pm} \right)$

$$a_1 = 20$$

$$d = 10$$

$$a_n - 20 = 10(n-1)$$

$$a_n = 10n + 10$$

$$a_1 = 2$$
 $d = -4$

$$an - 2 = -4(n-1)$$
 $an = -4n + 6$

ex: Write an excplit rule for the arithmetic sequence.

c)
$$a_6 = 7$$
, $d = 9$
 $a_0 - 7 = 9(1 - 6)$
 $a_0 = 9 - 47$

ex: Write an excplit rule for the arithmetic sequence.

$$d)(a_{10} = -5) a_{20} = 75$$

$$(10, -5)$$

$$(20, 75)$$

$$M = \frac{75 + 5}{2 - 0 - 10}$$

$$M = 8$$

Writing Recursive Rules for Arithmetic Sequences/Series

*Recursive rules give the beginning term or terms of a sequence and an equation that shows how a_n is related to one or more previous terms.

ex: Write a recursive rule for the arithmetic sequence.

a) 20, 30, 40, 50 ...
$$\begin{array}{c}
\Omega_1 = 20 \\
\Omega_0 = \Omega_{0-1} + 10 \\
\end{array}$$
Previous form

ex: Write a recursive rule for the arithmetic sequence.

$$\begin{aligned}
\alpha_1 &= 2 \\
\alpha_n &= \alpha_{n-1} - 4
\end{aligned}$$

The Sum of a FINITE Arithmetic Sequences

The Sum of a Finite Arithmetic Series

The sum of the first n terms of an arithmetic series is:

$$S_n = n \left(\frac{a_1 + a_n}{2} \right) = \frac{1}{2} \left(A_1 + A_0 \right)$$

- S sum of the 1st n terms
- n number of terms in the sum
- a₁ 1st term in the sequence
- a_n last term in the sequnce

*Infinite arithmetic sequences have "no sum." In other words the sum of an infinite arithmetic sequence is infinity or negative infinity and the sum diverges.

101 X5D

a)
$$a_n = 12n + 15$$
, $S_{20} = ?$

$$S_{20} = \frac{20}{2}(27 + 255) = 2820$$

b)
$$5+1-3-7+...$$
 $5_{15}=?$

$$S_{15} = \frac{15}{2}(5+-51) = (-345)$$

$$a_{15}=?$$

$$a_{15}=?$$

$$a_{15}=?$$

$$a_{15}=-4(n-1)$$

$$a_{15}=-4(n-1)$$

$$a_{15}=-4(n-1)$$

$$a_{15}=-4(n-1)$$

$$a_{15}=-4(n-1)$$

c) 2+6+10+...+58
$$S_n = \frac{1}{2}(2+58)$$
Write a rule
 $a_n - 2 = 4(n-1)$ $S_{15} = \frac{15}{2}(10)$
 $a_n = 4n-2$ $S_{15} = 450$
 $S_{15} = 6$

Not possible; infinite sum (arithmetic)

Sum diverges

Summation Notation

Summation Notation (a.k.a. Sigma Notation) is used to express a <u>series</u>.

ex: Find the sum, if possible.

a)
$$\sum_{n=1}^{15} 3n + 5 = 435$$

$$S_{15} = \frac{15}{2} (8 + 50)$$

$$S_{15} = \frac{15}{2} (8 + 50)$$

$$5) \sum_{i=0}^{\infty} i - 2 \quad \text{sum diverges}.$$

$$\leq (\hat{n}+1) = 2 + 5 + 10 + 17$$

$$= 34$$

ex: Express the series using summation notation. Then find the sum or explain why there is no sum.

a) 3, 0, -3, -6, -9
$$\sum_{n=1}^{5} (-3n+6) = -15$$

$$(n-3=-3(n-1))$$

$$\sqrt{n} = -3n+6$$

ex: Express the series using summation notation. Then find the sum or explain why there is no sum.

b) 1 + 2 + 3 + 4 + 5...

20 N=1

ND SUM (infinite) Sum diverges ex: Express the series using summation notation. Then find the sum or explain why there is no sum.