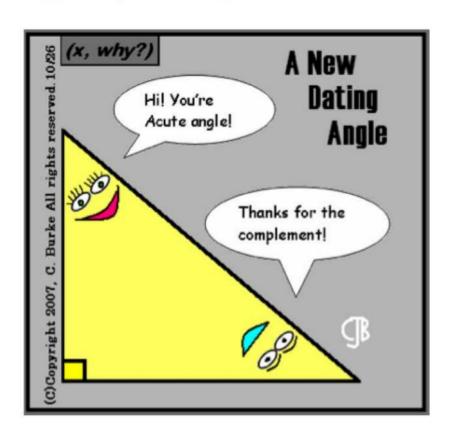
53.)
$$\frac{10}{1-0}(-4)^{n}$$

finite geo.
 $S_{11} = 1\left(\frac{1-(-4)^{n}}{1-(-4)^{n}}\right) = \frac{1+4^{n}}{5} = 838,861$

17.)
$$\frac{2}{i=0}\left(\frac{-3}{7}\right)^{i}$$

$$S = \frac{2}{1-1}$$

$$S = \frac{1}{1-1} = \frac{7}{1+3} = \frac{7}{10}$$


4)
$$A_{0} = 4$$
 $A_{0} = 4$
 $A_{0} = 2a_{0} - 1$
 $A_{1} = 2.4 = 8$
 $A_{2} = 2.8 = 16$
 $A_{3} = 2.16 = 32$
 $A_{4} = 2.32 = 64$

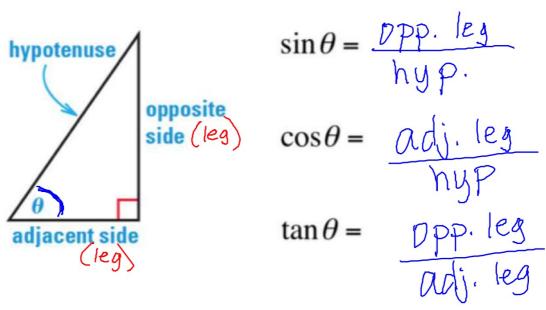
11.)
$$|-\frac{1}{3} + \frac{1}{4} - \frac{1}{27} + ... + \frac{1}{6561}$$

$$\alpha_{n} = |(-\frac{1}{3})^{n-1}| \qquad S_{n} = \alpha_{1} (\frac{1 - r^{n}}{1 - r})$$

$$S_{n} = |(-\frac{1}{3})^{n-1}| \qquad S_{n} = |(-\frac{1}{3})^{n-1}|$$

9.1 Right Triangle Trigonometry

What is trigonometry?


Trigonometry is is a branch of mathematics that studies relationships involving lengths and angles of triangles.

Commonly Used Greek Letters in Trigonometry Used to Represent Angle Measures:

θ: theta α: alpha β. peta

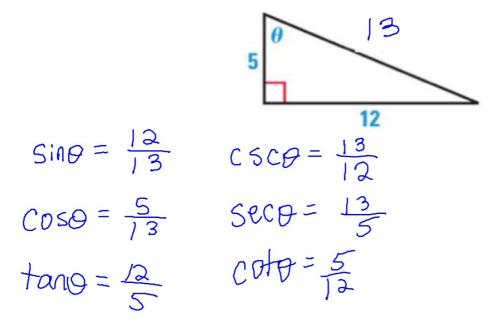
SOHCAHTOA

SOH CAH TOA

$$\sin\theta = \frac{DPP.}{hyP.}$$

$$\cos\theta = \frac{\text{adj. leg}}{\text{hyP}}$$

$$\tan \theta = \frac{\text{Dpp. leg}}{\text{adj. leg}}$$


Reciprocal Trigonometric Ratios

Cosecant:
$$\csc\theta = \frac{1}{\sin\theta} = \frac{\text{hyp.}}{\text{OPP. leg.}}$$

Secant:
$$\sec \theta = \frac{1}{\cos \theta} = \frac{\text{hyp.}}{\text{adj. leg}}$$

Cotangent: $\cot \theta = \frac{1}{\tan \theta} = \frac{\text{adj. leg}}{\text{ppp. leg}}$

Cotangent:
$$\cot \theta = \frac{1}{\tan \theta} = \frac{adj. leg}{ppp leg}$$

ex: Find all trigonometric functions of theta.

ex: If $\cos \theta = \frac{3}{4}$ find the other trigonometric functions of theta.

$$\sin \theta = \frac{4}{4}$$
 $\cos \theta = \frac{4}{17} = \frac{4\sqrt{7}}{7}$
 $\cos \theta = \frac{3}{4}$ $\sec \theta = \frac{4}{3}$
 $\tan \theta = \frac{17}{3}$ $\cot \theta = \frac{3}{17} = \frac{3\sqrt{7}}{7}$

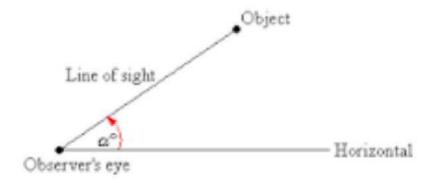
Common Pythagorean Triplets

Memorize these!

ex: Solve $\triangle ABC$.

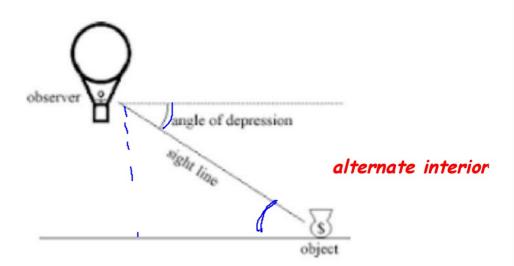
$$\frac{\text{find } \alpha}{\text{fan 28}^2 = \frac{\alpha}{15}}$$

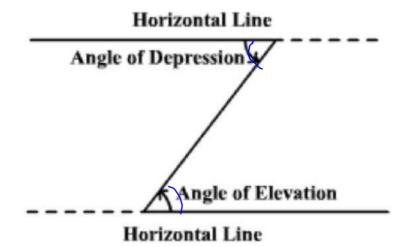
$$\frac{7.97}{} = \alpha$$


$$A \qquad b = 15$$

$$Cos 28 = 15$$

$$m \angle B = 62^{\circ}$$
 $a = 7.97$
 $c = 16.99$
Deg


Vocabulary


- <u>angle of elevation</u> - the angle between one's line of sight and the horizontal

Vocabulary

- <u>angle of depression</u> - the angle between one's line of sight and the horizontal

The angle of depression and elevation are CONGRUENT!

ex: A parasailer is attached to a boat with a rope 300 feet long. The angle of elevation from the boat to the parasailer is 48°. Estimate the parasailer's height above the boat.

300 Ft X SIN 48 = X 300 2229 FF X

ex: If a plane that is cruising at an altitude of 30,000 ft wants to land safely it must begin its descent so that the angle of depression to the airport is 7°. mile = 5280 ft

a) How many miles from the airport must the plane begin

descending?

46.27

30,000 $+607 = \frac{30,000}{X}$ $X = 244330.329 \div 5280$ X = 46.27 miles

ex: If a plane that is cruising at an altitude of 30,000 ft wants to land safely it must begin its descent so that the angle of depression to the airport is 7°.

b) How many miles will the plane travel before landing?

X 30,000

$$30,000$$
 Sin7 = $\frac{30000}{\times}$
 $\chi = 46.62 \text{ miles}$

ex: Determine whether the sequence is arithmetic, geometric, or neither. Then write an explicit and recursive rule.

Explicit
$$a_{n}-2=-5(n-1)$$

$$a_{n}=-5n+7$$

2,-3,-8,-13...

Recursive

$$\Omega_{1} = 2$$
 $\Omega_{n} = \Omega_{n-1} - 5$

ex: Use sigma notation to represent each series below. Then find the sum, if possible.

Finte geometric

(ists if
$$-1 < \Gamma < 1$$

$$2 + \frac{2}{9} + \frac{2}{81} \dots$$

$$2 = 2 \left(\frac{1}{9}\right)^{n-1} = \frac{9}{4}$$

$$\Omega_{n} = \Omega_{1} \cdot \Gamma^{n-1}$$

$$\Omega_{n} = 2 \cdot \left(\frac{1}{9}\right)^{n-1}$$

$$= \Omega_{1}$$

$$S = \frac{2}{1 - 4} = \frac{2}{89}$$

$$= 94$$

ex: Use sigma notation to represent each series below. Then find the <u>sum</u>, if possible.

geometric
$$5+10+20+...+20480$$
 $\int_{n=1}^{13} 5(a)^{n-1}$
 $\int_{n=1}^{13} 5(a)^{n-1}$

ex: Find the indicated term.

Geometric Sequence,
$$a_3 = 12$$
, $a_6 = 96$, find a_{11} .

 $\begin{vmatrix} 2 & -1 & -1 \\ 2 & -1 & -1 \end{vmatrix} = 96$
 $\begin{vmatrix} 2 & -1 & -1 \\ 12 & -1 & -1 \end{vmatrix} = 3 \begin{vmatrix} 2 & -1 \\ 2 & -1 \end{vmatrix}$
 $\begin{vmatrix} 2 & -1 & -1 \\ 2 & -1 \end{vmatrix} = 3 \begin{vmatrix} 2 & -1 \\ 2 & -1 \end{vmatrix}$

ex: Find the sum of the first 203 positive odd integers.

 $-3, 2, 7, \dots$

ex: How many terms of the arithmetic sequence must be added together for the sum of the series to be 116?

$$d = 5$$

Rule:

 $S_n = \frac{n(a_1 + a_2)}{2}$

$$116 = \frac{n(-3+5n-8)}{2}$$

$$232 = 5\tilde{n} - 11\tilde{n}$$

$$0 = 5n^{2} - 11n - 232$$

$$0 = (5n + 29)(n - 8)$$

$$1 = 24 (8)$$

ex: Generate the first 5 terms of the recursively-defined sequence.

$$a_1 = 3$$
 $a_2 = 2$ $a_n = a_{n-1} + (a_{n-2})^2 - 5$
 $0 = 2 + (3)^2 - 5 = 6$
 $0 = 6 + (2)^2 - 5 = 5$
 $0 = 5 + (6)^2 - 5 = 36$