$$55) \stackrel{()}{=} (-5+7i) = 486$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

45)
$$\frac{14}{5(-54+9i)}$$

 $i = 5$
 $0 = 5$
 $0 = 10(-9+72)$
 $0 = 10$
 $0 = 10$
 $0 = 10$

7.3/7.4 Geometric Sequences and Series

$\frac{1}{2}$	1/8	$\frac{1}{32} \frac{\frac{1}{64}}{\frac{1}{64}}$ $\frac{1}{16}$	1
1			

Geometric Sequences

In a **geometric sequence**, the ratio of any term to the previous term is constant. This constant ratio is called the **common ratio** and is denoted by *r*.

ex: Determine if the sequences is geometric. If so, identify the common ratio.

No

r=2; Yes

$$\frac{\Omega_2}{\alpha_1} = \frac{6}{3} = 2$$

c) 16, 12, 9, 27/4 . . .

ex: Write the 1st 5 terms of the sequence and sketch the graph.

Writing Explicit Rules for Geometric Sequences/Series

*Since geometric sequences have an exponential pattern, the explicit rule is exponential!

Recall Exponential Functions: y = ab*

Explicit Rule:
$$a_n = a_1 r^{n-1}$$

Where:

a₁ 1st term

r common ratio

ex: Write an explicit rule for the geometric sequence.

$$a_1 = 4$$

$$c = 5$$

$$\alpha_n = 4(5)^{n-1}$$

b)
$$a_3 = 3$$
, $r = 1/4$

$$a_{1} = 12$$
 $r = 1/4$

$$Q_n = 12\left(\frac{1}{4}\right)^{n-1}$$

ex: Write an explicit rule for the geometric sequence.

c)
$$a_3 = 10$$
, $a_6 = 270$

$$270 = 0$$

$$10 = 5$$

$$270 = 0.5$$
 $270 = \frac{10}{270} \cdot 5 = 270 = 10^{3}; r = 3$

 $\Omega_{0} = \frac{10}{4} \left(3\right)^{1}$

$$10 = \alpha_1 r^2$$

$$\frac{10}{r^2} = \alpha_1$$

$$10r^{3} = 270$$
 $r = 3$

Writing Recursive Rules for Geometric Sequences/Series ex: Write a recursive rule for the geometric sequence.

Previous

$$a_1 = 4 / 2$$

$$a_n = (a_{n-1}) \cdot 5$$

b)
$$a_3 = 3, r = 1/4$$

$$Q_{n} = 12$$

$$Q_{n} = (a_{n-1}) \frac{1}{4}$$

The Sum of a FINITE Geometric Sequence/Series

The Sum of a Finite Geometric Series

The sum of the first n terms of a geometric series with common ratio $r \neq 1$ is:

$$S_n = a_1 \left(\frac{1 - r^n}{1 - r} \right)$$

S_n sum of the 1st n terms

n number of terms in the sum

a₁ 1st term in the sequence

r common ratio

The Sum of an INFINITE Geometric Sequence/Series

The Sum of an Infinite Geometric Series

The sum of an infinite geometric series with first term a_1 and common ratio r is given by

$$S = \frac{a_1}{1 - r}$$

provided |r| < 1. If $|r| \ge 1$, the series has no sum.

S sum of ALL terms

a₁ 1st term in the sequence/series

r common ratio

ex: Find the indicated sum, if possible.

a) 1, 2, 4, 8, ...

$$S_{9} = ?$$

$$finite geometric (r = a)$$

$$S_{9} = 1 \left(\frac{1-2}{1-a} \right) = \frac{1-51a}{-1} = 511$$

b)
$$\sum_{n=1}^{8} 6\left(-\frac{1}{2}\right)^{n-1}$$
 $C_{1} = 6$

$$C_{2} = -\frac{1}{2}$$

$$C_{3} = 6\left(\frac{1 - \left(-\frac{1}{2}\right)^{8}}{1 - \left(-\frac{1}{2}\right)}\right) = 6\left(\frac{1 - \frac{1}{256}}{\frac{3}{256}}\right)$$

$$= 6\left(\frac{255}{256}\right) = 6\left(\frac{255}{256}\right) = 255$$

c)
$$\sum_{n=1}^{\infty} 6\left(-\frac{1}{2}\right)^{n-1}$$

$$S = \frac{6}{1 - \left(-\frac{1}{2}\right)} = 4$$

$$\int = \frac{-1}{2}$$

$$S_5 = 6 - 3 + \frac{6}{4} - \frac{6}{8} + \frac{6}{16} = 4.125$$

d)
$$4-2+1-0.5+...$$

$$C = -\frac{1}{2}$$

$$C_1 = 4$$

$$S = \frac{4}{1 - (-\frac{1}{2})} = \frac{8}{3}$$

e) 9 + 6 + 3 + 0 - 3 - . . .

in finite arithmetic (d = -3)

No sum

ex: Find the indicated sum, if possible.

f)
$$\sum_{n=0}^{6} n^2 = 0^2 + 1^2 + 2^2 + 3^2 + 4^2 + 5^2 + 6^2$$

$$= 0$$

ex: Express the series using summation notation. Then find the sum or explain why there is no sum.

/r/>/ r=3

$$\sum_{n=1}^{\infty} 5(3)^{n-1}$$

ex: Express the series using summation notation. Then find the sum or explain why there is no sum.

$$\frac{4}{5} = 200$$

$$\frac{5}{3} = 200$$

$$\frac{4}{5 \cdot 3} \cdot 3^{-1} = \frac{5}{3} \cdot 3^{n}$$

$$\frac{4}{5 \cdot 3} \cdot 3^{-1} = \frac{5}{3} \cdot 3^{n}$$

$$equivalent$$

ex: Express the series using summation notation. Then find the sum or explain why there is no sum.

$$\sum_{n=1}^{60} 100 \left(\frac{1}{5}\right)^{n-1} = \frac{100}{1-\frac{1}{5}}$$

ex: Solve for x.

a)
$$\sum_{i=1}^{x} (5-5i) = -50$$

$$(x) = 5$$

$$S_{n} = \frac{n(a_{1} + a_{n})}{2}$$

$$-5p = \frac{x(p + 5 - 5x)}{2}$$

$$-10p = Sx - Sx^{2}$$

$$5x^{2} - Sx - 10p = D$$

$$5(x^{2} - x - 20) = D$$

$$5(x - 5)(x - 20) = D$$

$$x = S1$$

ex: Solve for x.

$$b) \sum_{n=0}^{\infty} 3 \left(\frac{x}{2}\right)^n = 7$$

$$\chi = \frac{8}{7}$$

$$S = \frac{\alpha_{1}}{1 - \Gamma}$$

$$7 = \frac{3}{1 - 2}$$

$$7(1 - \frac{x_{2}}{2}) = 3$$

$$7(1 - \frac{x_{2}}{2}) = 3$$

$$7(1 - \frac{x_{2}}{2}) = 3$$

$$1 = 4$$

$$1 = 8$$

ex: Find the explicit rule for. . .

$$\log x, \log \sqrt{x}, \log \sqrt{x} \dots$$

$$\log x, \frac{1}{2} \log x, \frac{1}{4} \log x, \dots$$

$$\Omega_n = \left(\frac{1}{2}\right) \log x = \log x$$

ex: Find the sum of the first 15 three digit whole numbers ending in 5.

$$\int_{0.5}^{10.5} + 11.5 + 12.5 + ... + 24.5$$

$$\int_{0.5}^{10.5} = \frac{n(a_1 + a_2)}{2}$$

ex: Find the missing terms of the arithmetic sequence.

ex: Find the missing terms of the geometric sequence.

$$48.7^{3} = \frac{48}{27}$$

$$7^{3} = \frac{1}{27}$$

$$7 = \frac{1}{3}$$