$$5x - 2y = -7$$
 $11x - 7y = -5$

$$(-3, -4)$$

3x3 System of Equations

Solution Types:

Algebraic Solving Methods:

- Substitution
- Elimination

*See printout.

Substitution

ex: Solve.

$$2x-4z=20$$
a) $(-3x+y-4z=20)-2$
3 $-4x+2y+3z=-15$
+ $6x-2y+8z=-40$

$$2x+11z=-55$$

The first equation doesn't have a "y". Eliminate "y" by adding equation 2 and 3. Then you have a system with 2 variables.

(0,0,-5)

Elimination

ex: Solve.

$$3x - 2y + 4z = 35$$

$$4x + y - 5z = -36$$

$$35x - 3y + 3z = 31$$

Add 2 and 3

$$5x - 3y + 3z = 31$$

 $-12x + 3y - 15z = -108$

$$-7x - 12z = -77$$

Add 1 and 2

$$3x-2y+4z=35$$
 $-8x+2y-10z=-72$
 $-5x-6z=-37$
 $5x+6z=37$

$$2(5x+6z=37)$$

$$10x+12z=74$$

$$-7x-12z=-77$$

$$3x=-3$$

$$\chi=-1$$

$$(-1,-5,7)$$

ex: Solve.

c)
$$5x + 4y - 5z = -10$$
$$-4x - 10y - 8z = -16$$
$$6x + 15y + 12z = 24$$

$$4x - y + 2z = 11$$

 $x + 2y - z = -1$
 $2x + 2y - 3z = -1$

$$(2,-1,1)$$

ex: Solve.

$$-6a + 9b - 12c = 21$$

d)
$$-2a+3b-4c=7$$

10a - 15b + 20c = -30

Infinitely many solutions

REVIEW

ex: Solve graphically.

$$y \ge 2x + 1$$
$$3x + 4y < 12$$

REVIEW

ex: Solve algebraically.

$$8x - 6y = -20$$
$$-16x + 7y = 30$$

REVIEW

ex: The admission fee at a small fair is \$1.50 for children and \$4.00 for adults. On a certain day, 2200 people enter the fair and \$5050 is collected. How many children and how many adults attended?