$$|9.\rangle y = \frac{3}{4} \sqrt[3]{x} - 1$$

$$\frac{3}{4} \sqrt{3}$$

$$\frac{x}{4} \sqrt{3}$$

$$-8 - \frac{3}{2} - 1 = -2\frac{1}{4}$$

$$-1 - \frac{3}{4} - 1 = -1\frac{3}{4}$$

$$0 - 1$$

$$1 \sqrt[3]{7} - 1 = -1/4$$

$$8 / \frac{3}{2}$$

23)
$$g(x) = -\frac{1}{3}\sqrt{x} - 6$$

 $(0, -6)$
 $y = -(x - 4)^{1/3} + 7$

$$y = 5 - 35x + 10$$

$$y = -35x + 10 + 5$$

$$y = -35(x + 2) + 5$$

$$x = -2$$

$$-11/5 = 6$$

$$-2 = 5$$

$$-9/5 = 4$$

$$y = -35x + 10$$

$$(-2, 5)$$

$$(-3, 5)$$

$$y = -35(x + 2) + 5$$

$$(-3, 5)$$

$$y = -35(x + 2) + 5$$

$$(-3, 5)$$

$$f(g(x)) = \frac{1}{8}x^3 - 3$$

$$\left(\frac{1}{8}x^3 - 3\right)(x)$$

$$y = \frac{1}{8}x^3 - 3$$

$$y = \frac{1}{8}y^3 - 3$$

$$y = \frac{1}{8}y^3 - 3$$

6.)
$$h(x) = \frac{x+1}{x-1}$$

$$\frac{x}{1} = \frac{y+1}{y-1}$$

$$xy - x = y+1$$

$$xy - y = x+1$$

$$y(x+1) = x+1$$

3.6 Radical Equations

Square Root Equations - 1 Root

ex: Solve. (REAL SOLUTIONS ONLY)

a)
$$\sqrt{x-5}+2=7$$

$$(\sqrt{x-5})=(5)$$

$$x-5=25$$

$$(x=30)$$

Steps:

- 1) Isolate the radical
- 2) Solve (eliminate the radical)
- 3) Check for extraneous

Check:

$$\sqrt{X-5} + 2 = 7$$

 $\sqrt{30-5} + 2 = 7$
 $\sqrt{25} + 2 = 7$
 $7 = 7$

b)
$$3\sqrt{x+2} - 4 = -10$$

$$\sqrt{X+2} = -2$$

$$X+2=4$$

$$X=2$$

Check: $\sqrt{X+2} = -2$

1x+2 - 2 14 + - 2

c)
$$1-2\sqrt{x^2-5x+15} = -5$$

$$\sqrt{\chi^2-5x+15} = 3$$

$$\chi^2-5x+15 = 9$$

$$\chi^2-5x+15 = 9$$

$$\chi^2-5x+6=0$$

$$(x-2)(x-3)=0$$

$$(x-2)(x-3)=0$$

Square Root Equations - More Than 1 Root

d)
$$\sqrt{5x-6} = \sqrt[2]{3\sqrt{x-1}}$$

 $5x-6 = 9(x-1)$
 $5x-6 = 9x-9$
 $3 = 4x$
 $\frac{3}{4} = x$

$$\sqrt{5.\frac{3}{4}-6} \pm 3\sqrt{\frac{3}{4}-1}$$

e)
$$\sqrt{x-3} = \sqrt{x+4} - 1$$

 $\chi - 3 = (\sqrt{\chi+4} - 1)(\sqrt{\chi+4} - 1)$

$$X-3 = X + 4 - \sqrt{X+4} - \sqrt{X+4} + 1$$

$$X-3=X+4-2\sqrt{X+4}+1$$

$$2\sqrt{x+4} = 8$$
 $\sqrt{x+4} = 4 = 7$

$$x+4 = 8$$
 $\sqrt{x+4} = 4 = 7$
 $\sqrt{x+4} = 16$
 $\sqrt{x+4} = 12$

Steps

- 1) Put the radicals on opposite sides of the equation
- Square both sides
- Isolate the radical
- 5) Solve, check for extraneous

$$\sqrt{x-3} = \sqrt{x+4} - 1$$
 $\sqrt{9} = \sqrt{16} - 1$

f)
$$\sqrt{x} + \sqrt{x+5} = 5$$

 $(\sqrt{x})^2 = (5 - \sqrt{x+5})$
 $x = 25 - 10\sqrt{x+5} + x + 5$
 $10\sqrt{x+5} = 30$
 $\sqrt{x+5} = 3$

-5 [X+5-5 [X+5

Nth Root Equations

Check for extraneous solutions with even roots. Why?
The domain is not all reals.

h)
$$\sqrt[3]{2x+1}-4=1$$
 $(\sqrt[3]{2x+1})^{3}=(5)^{3}$
 $2x+1=125$
 $x=62$

i)
$$\sqrt[4]{5x^2 - 4} = x$$
 $5x^2 - 4 = x$
 $x^4 - 5x^2 + 4 = 0$
 $(x^2 - 4)(x^2 - 1) = 0$
 $\pm 2, \pm 1$

$$\begin{array}{ccc}
D \sqrt{x} &= \sqrt[4]{x} \\
(x) &= (x) \\
($$

1)
$$x^2 = 4$$

$$\chi = \pm 2$$

m)
$$x^3 = -8$$

$$\left(\chi^{2}\right)^{2} = \left(4\right)^{1/2}$$

$$\chi = \pm \sqrt{4}$$

$$(\chi^3) = (-8)^3$$

 $\chi = \sqrt[3]{-8} = -2$

Rational Exponent Equations

If you take the even root of both sides, it is just like a square root so +/- will be necessary

P)
$$2(x+4)^{2/3}+1=19$$

$$(x+4)^{2/3}+1=19$$

$$-4+27$$

$$x+4=\pm 27$$

$$y=-4\pm 27$$

$$x=-4\pm 27$$

$$x=-33,-31$$

9)
$$5-3(2x-1)^{2/3} = 32$$

$$(2x-1)^{2/3} = (-7)^{3/2}$$

$$(3x-1)^{2/3} = (-7)^{3/2}$$

$$(3x-1)^{3/2} = (-7)^{3/2}$$

$$(3$$

r)
$$\frac{1}{2}(x+3)^{5/2} - 4 = 12$$

$$((x+3)^{5/2} - 4 = 12$$

$$((x+3)^{5/2} - 6 = (32)^{2/5}$$

$$(x+3)^{2} = (32)^{2/5}$$

$$(x+3)^{2} = (32)^{2/5}$$

$$(x+3)^{2} = (32)^{2/5}$$

$$(x+3)^{2} = (32)^{2/5}$$

ex: Solve.
s)
$$3(x^2 - 5x - 5)^{7/6} - 4 = -1$$

 $(x^2 - 5x - 5)^{7/6} = 1$
 $(x^2 - 5x - 5)^{7/6} = 1$

Graph square roots and cube roots with D and R
Inverse functions
verifying that functions are inverses
finding an inverse function
evaluating an inverse function (example f⁻¹(2))
determine if a function has an inverse function
(HLT and VLT)
Solving radical equations
Solving fractional exponent equations

t)
$$x^{3/2} = x$$

REVIEW

ex: Sketch and state the domain and range in set notation.

$$y = -2\sqrt{5 - x}$$

REVIEW

ex: Sketch and state the domain and range in set notation.

$$y = 3\sqrt[3]{4x+1} - 2$$

REVIEW

$$\sqrt{5x+6}+3=\sqrt{3x+3}+4$$