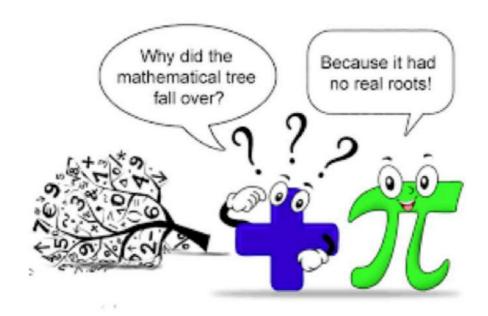
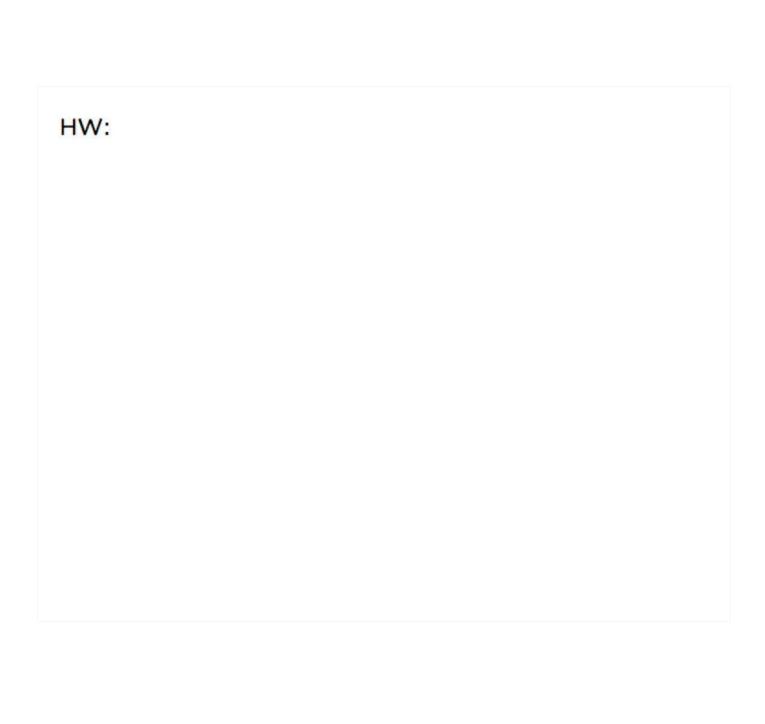
2.7 Finding All Zeros Cont. Analyzing Polynomial Functions



*See printout.



<u>Polynomial Degrees and Number of Turning Points</u>

Polynomial Type	Degree	Maximum Number of Turning Points
Constant	0	
Linear		0
Quadratic	2)
Cubic	3	2
n th Degree Polynomial	n	N-I

ex: Write a polynomial function in standard form with integral coefficients and the given roots.

a)
$$-\frac{2}{5}$$
, 3i, -3i
 $f(x) = (5x + 2)(x^{2} + 9)$
 $f(x) = 5x^{3} + 2x^{2} + 45x + 18$

ex: Write a polynomial function in standard form with integral coefficients and the given roots.

b) 0 multiplicity 5,
$$-\sqrt{3}$$
, $\sqrt{3}$

$$f(x) = \chi^{5}(\chi^{2} - 3)$$

$$f(x) = \chi^{7} - 3\chi^{5}$$

ex: Write a polynomial function in standard form with integral coefficients and the given roots.

b) 0 multiplicity 5,
$$1-\sqrt{3}$$
, $1+\sqrt{3}$
 $f(x) = \chi^{5}(\chi^{2}-2\chi-2)$ Sum: $-(2)$
 $f(x) = \chi^{7}-2\chi^{6}-2\chi^{5}$ Product: $(1-\sqrt{3})(1+\sqrt{3})$
 $\chi = \frac{2 \pm \sqrt{4-4(1)(2)}}{2(1)} = \frac{2\pm 2\sqrt{3}}{2}$ $\frac{1-3}{2}$

Sum and Product Rule

$$-3, 6$$
Sum: $-(-3+6)=b$
Product: $(-3)(6)=c$

$$-18=c$$

$$f(x)=x-3x-18$$

$$-5, -1$$
Sum: $-(-5+-1)=6$
product: $(-5)(-1)=5$

$$F(x)=x^2+6x+5$$

$$\begin{array}{c}
-\frac{1}{2}, & 2 \\
Sum: -(-\frac{1}{2} + 2) \\
-\frac{3}{2}
\end{array}$$

$$\begin{array}{c}
\text{product: } -1 \\
2(x^{2} - \frac{3}{2} \times -1 = 0)
\end{array}$$

$$\begin{array}{c}
2x^{2} - 3 \times -2 = 0
\end{array}$$

ex 1) Determine the degree and state the maximum number of turning points.

a)
$$f(x) = 2x^3 + 5x^2 - 9$$

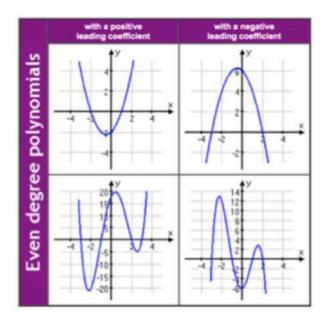
b)
$$f(x) = 9 - 6x^2$$

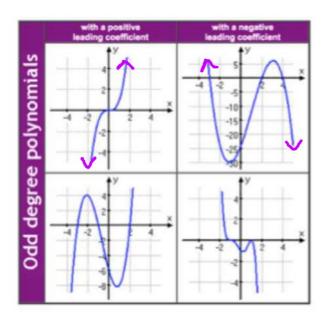
ex 1) Determine the degree and state the maximum number of turning points.

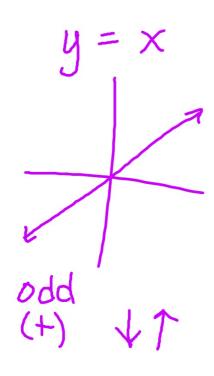
c)
$$f(x) = (x-2)^5 (x+3)^6$$

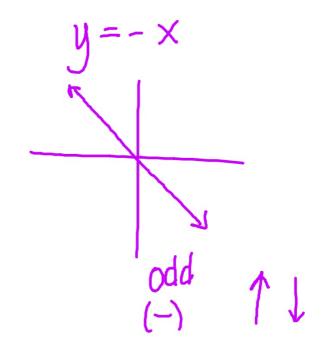
d)
$$f(x) = 5(1-x)^7$$

End Behavior









Stating End Behavior

$$x \to -\infty$$
, $y \to$ _____

$$x \to \infty$$
, $y \to$ _____

ex 2) Determine the end behavior of each polynomial.

a)
$$f(x) = 2x^3 + 5x^2 - 9$$

 $\chi \to -\infty$ $y \to -\infty$
 $\chi \to \infty$ $y \to \infty$

b)
$$f(x) = 9 - 6x^2$$
even
 $(-)$
 $y \rightarrow -\infty$
 $y \rightarrow -\infty$
 $y \rightarrow -\infty$
 $y \rightarrow -\infty$
 $y \rightarrow -\infty$

ex 2) Determine the end behavior of each polynomial.

c)
$$f(x) = (x-2)^5 (x+3)^6$$

odd $x \rightarrow -\infty$ $y \rightarrow -\infty$
 $(+)$ $x \rightarrow \infty$ $y \rightarrow \infty$

d)
$$f(x) = 5(1-x)^7$$

even

 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$

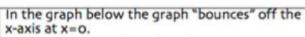
$$f(x) = 7x^{6} - 2x^{4} - x + 1$$

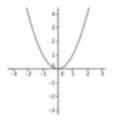
$$even \qquad x \rightarrow -\infty \qquad y \rightarrow \infty$$

$$x \rightarrow \infty \qquad y \rightarrow \infty$$

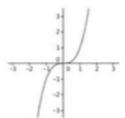
$$x \rightarrow \infty \qquad y \rightarrow \infty$$

Bouncing and Crossing Zeros



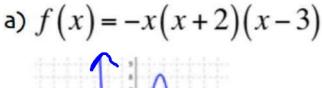


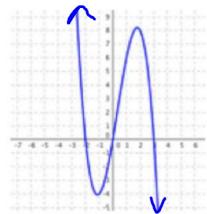
In the graph below the graph "crosses" the x-axis at x=0.



ex 3) Using the graph of the polynomial function,

- 1. State the degree of the polynomial.
- 2. Find the zeros. State the multiplicity if greater than 1.
- 3. State the end behavior.
- 4. Determine whether the graph "crosses" the x-axis or "bounces" off the x-axis at each zero.





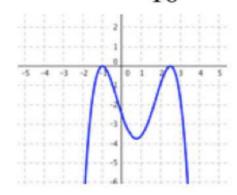
1. 3
2.
$$x=D,-2,3$$

3. $x\to-\infty$ $y\to0$
 $x\to\infty$ $y\to-\infty$
4. $x=-2$ $x=0$ $x=3$
 $x=0$ $x=3$
 $x=0$ $x=3$

b)
$$f(x) = \frac{1}{15}(x+3)^4(x-1)^3$$

3.
$$\chi \to -\infty$$
 $y \to -\infty$
 $\chi \to \infty$ $y \to \infty$
4. -3 cross

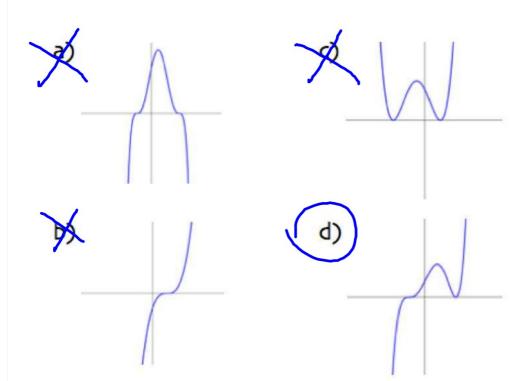
c)
$$f(x) = -\frac{1}{10}(2x-5)^2(x+1)^2$$



2.
$$X = \frac{5}{2}$$
 $X = -($
 $m.0 \neq 2$ $mvof 2$
3. $x \rightarrow -\infty$ $y \rightarrow -\infty$
 $x \rightarrow \infty$ $y \rightarrow -\infty$

 A graph "cross 	s" the x-axis at a zero if the multiplici	ty
of that zero is	odd.	

 A graph "bounces" off the x-axis at a zero if the multiplicity of that zero is <u>EVEN</u>. ex 4) Which of the following graphs could represent the polynomial $f(x) = a(x-b)^2 (x-c)^3$?



Review

ex: Determine the number of imaginary zeros with the given degree and graph.

Degree: 4

