Factoring Bootcamp 2 2.4 Factor and Solve Polynomial Equations

*Grab your factoring flowchart!

Perfect Cubes

$$1^3 =$$

$$2^3 =$$

$$3^3 = 2^{-1}$$

$$4^3 = 6$$

$$6^3 = 2 \setminus 0$$

$$10^3 - 1000$$

Sum/Difference of Cubes

$$a^3 + b^3 = \left(a + b \right) \left(a^2 - ab + b^2 \right)$$

$$a^3 - b^3 = \left(a - b \right) \left(a^2 + ab + b^2 \right)$$

$$(3+b^3 + (a+b)^3)$$

Remembering the SIGNS in the Cubes Formula

5 - same sign

o - opposite sign

AP - always positive

$$(a^{3} + b^{3} = (a + b)(a^{2} - ab + b^{2})$$

$$(a^{3} - b^{3} = (a - b)(a^{2} + ab + b^{2})$$

$$50AP$$

a)
$$x^3 - 27 = (x - 3)(x^2 + 3x + 9)$$

 $a = x$
 $b = 3$

b)
$$x^3 + 216 = (x + 6)(x^2 - 6x + 36)$$

 $\alpha = x$
 $b = 6$

c)
$$8x^3 + 1 = (2x + 1)(4x^2 - 2x + 1)$$

 $a = 2x$
 $b = 1$

d)
$$7000 - 7x^3 = 7(1000 - x^3)$$

 $a = 10$
 $b = x$
 $= 7(10 - x)(100 + 10x + x^2)$

Quadratic Form

$$\frac{ax^{2n} + bx^{n} + c}{(\chi^{2} + b\chi^{2} + b\chi^{2} + c)}$$

$$\frac{\chi^{2} + 4\chi^{2} + 3}{(\chi^{2} + 3)(\chi^{2} + 1)}$$

$$\frac{\chi^{2} + 4\chi^{2} + 3}{(\chi^{2} + 3)(\chi^{2} + 1)}$$

a)
$$x^{2}-3x-4$$
 $\chi^{4}-\chi^{2}-12$ $(\chi^{2}-4)(\chi^{2}+3)$ $(\chi+1)(\chi-1)(\chi^{4}+3)$
b) $x^{10}-3x^{5}-4$ $(\chi^{5}-4)(\chi^{5}+1)$

9)
$$2x^4 + 7(x^2) + 6$$
 2 1
 $(2x^4 + 5)(x^4 + 2)$ 2 3

h)
$$2x^{11} - 9x^{6} + 10x$$

 $\times (2x^{10} - 9x^{5} + 10)$
 $\times (2x^{5} - 5)(X^{5} - 2)$

k)
$$x^{5} - x^{3} + 64x^{2} - 64$$

 $\chi^{3}(\chi^{2} - 1) + 64(\chi^{2} - 1)$
 $(\chi^{3} + 64)(\chi^{2} - 1)$
 $(\chi + 4)(\chi^{2} - 4\chi + 16)(\chi + 1)(\chi - 1)$
 $\alpha = \chi$
 $b = 4$

Theorem:

A polynomial equation with degree n has _____ solutions.

Vocabulary:

solutions/roots - answers to an equation

<u>zeros</u> - quantities that make a function equal to zero

b)
$$2x^{4} + 7x^{2} - 15 = 0$$

 $(2x^{2} - 3)(x^{2} + 5) = 0$
 $2x^{2} - 3 = 0$
 $x^{2} + 5 = 0$
 $x^{2} = -5$
 $x = -5$

c)
$$24x^{4} + 3x = 0$$

 $3 \times (8x^{3} + 1) = 0$
 $3 \times (2 \times + 1)(4x^{2} - 2x + 1) = 0$
 $x = 0 \times = -\frac{1}{2} \times x = \frac{2 \pm \sqrt{-12}}{8} = \frac{2 \pm 2i\sqrt{3}}{8} = \frac{1}{4} \pm \frac{\sqrt{3}}{4}i$

d)
$$x^3 - 5x^2 - 9x + 45 = 0$$

 $(\chi^2 - 9)(\chi - 5) = 0$
 $(\chi + 3)(\chi - 3)(\chi - 5) = 0$
 $(\chi + 3)(\chi - 3)(\chi - 5) = 0$

e)
$$x^{4} + 2x^{2} + 1 = 0$$

 $(x^{2} + 1)(x^{2} + 1) = 0$
 $x^{2} + 1 = 0$
 $\sqrt{x^{2}} = \sqrt{-1}$
 $x = \pm c$, muth of 2

f.)
$$x^{7} - 64x^{5} = D$$

 $x^{5}(x-8)(x+8)=0$
 $x = 8, -8$
 $x = 8, -8$
 $x = 8, -8$
 $x = 8, -8$

ex: Write a polynomial equation in standard form with integral coefficients and the given solutions.

a) 5, -2/3, 0
$$(x-5)(3x+2) \times = 0$$

$$3x^3 - 13x^2 - 10x = 0$$

ex: Write a polynomial equation in standard form with integral coefficients and the given solutions.

b)
$$(2i, -2i, 0)$$
 multiplicity $(2i, -2i)(x+2i)(x+2i)(x^2 = 0)$
 $(x^2-4i^2)x^2$
 $(x^2-4i^2)x^2 = 0$
 $(x^2+4)x^2 = 0$
 $(x^2+4)x^2 = 0$

Review

ex: Evaluate using synthetic substitution.

$$f(x) = 5x^4 - x^3 + 7, f(3) = ?$$

Review

ex: Peform the indicated operation.

$$(x^2+x-6)-(5x^2-2x+3)$$