Factoring Bootcamp 2 2.4 Factor and Solve Polynomial Equations

*Grab your factoring flowchart!

REVIEW:

a)
$$x^2 - 9 \left(\chi + 3 \right) (\chi - 3)$$

b)
$$2x^2 - 3x - 14$$
 $(2x - 7)(x + 2)$

c)
$$9x^2 + 12x + 4$$
 $(3x + 2)^2$

REVIEW:

d)
$$2x^2 + 162$$

 $2(x^2 + 81)$

e)
$$x^3 + 3x^2 - 2x - 6$$

 $\chi^2(\chi + 3) - 2(\chi + 3)$
 $(\chi^2 - 2)(\chi + 3)$
f) $x^3 - 3x^2 - 16x + 48$ $(\chi^2 - 16)(\chi^2 -$

f)
$$\frac{x^3 - 3x^2 - 16x + 48}{X^2(x-3)^{-16}(x-3)} = (\chi^2 - 16)(x-3)$$

= $(\chi + 4)(\chi - 4)(\chi - 3)$

Perfect Cubes

$$1^{3} = 1$$
 $2^{3} = 8$
 $3^{3} = 27$
 $4^{3} = 64$
 $5^{3} = 125$
 $6^{3} = 216$
 $10^{3} = 1000$

Sum/Difference of Cubes

$$a^3 + b^3 = (\alpha + b)(\alpha^2 - ab + b^2)$$

$$a^{3}-b^{3}=(a-b)(a^{2}+ab+b^{2})$$

Remembering the SIGNS in the Cubes Formula

5 - same sign

O - opposite sign

AP - always positive

a)
$$x^3 - 27 \quad (x - 3)(x + 3x + 9)$$

 $a = x$
 $b = 3$

b)
$$x^3 + 216$$
 $(x + b)(x^2 - bx + 36)$
b = 6

c)
$$8x^3 + 1$$
 $(2x + 1)(4x^2 + 1)$
 $a = 2x$
 $b = 1$

d)
$$7000 - 7x^3$$

 $7(1000 - x^3) = 7(10 - x)(100 + 10x + x^2)$
 $a = 10$
 $b = x$

Quadratic Form

$$ax^{\frac{2n}{n}} + bx^{\frac{n}{n}} + c$$

$$\chi^{2} + 7\chi + 12$$

a)
$$x^2 - 3x - 4$$

 $(x - 4)(x + 1)$

b)
$$x^{10} - 3x^5 - 4$$
 let $a = x^5$ $a^2 = x^{10}$
 $a^2 - 3a - 4$
 $(a - 4)(a + 1)$
 $(x^5 - 4)(x^5 + 1)$

c)
$$x^{\frac{2}{13}} - 3x^{\frac{1}{13}} - 4$$

d)
$$x^{2n} - 3x^n - 4$$

e)
$$x^{4} - 3x^{2} - 4$$
 $(x^{2} - 3a - 4)$
 $(x^{2} - 4)(x^{2} + 1) = (x^{2} - 4)(x^{2} + 1) = (x^{2} - 4)(x^{2} + 1)$

f) $x^{6} - 3x^{3} - 4$
 $(x^{2} - 4)(x^{2} + 1) = (x^{2} - 4)(x^{2} - x + 1)$

diff of 2 cubes

9)
$$2x^4 + 7x^2 + 6$$

 $(2x^4 + 3)(x^4 + 2)$

h)
$$2x^{11} - 9x^{6} + 10x$$

 $\times (2x^{10} - 9x^{5} + 10)$
 $\times (2x^{5} - 5)(x^{5} - 2)$

i)
$$8x^6 - 7x^3 - 1$$

j)
$$16x^4 - 24x^2 + 9$$

k)
$$x^{5} - x^{3} + 64x^{2} - 64$$

 $\chi^{3}(\chi^{2} - 1) + 64(\chi^{2} - 1)$
 $(\chi^{3} + 64)(\chi^{2} - 1)$

$$(X+1)(X-1)(X+4)(X^2-4X+16)$$

Theorem:

A polynomial equation with degree n has _____ solutions.

Vocabulary:

solutions/roots - answers to an equation

zeros - quantities that make a function equal to zero

a)
$$x^2 - 8x + 15 = 0$$

b)
$$2x^{4} + 7x^{2} - 15 = 0$$

 $(2x^{2} - 3)(x^{2} + 5) = 0$
 $2x^{2} - 3 = 0$
 $(2x^{2} - 3)(x^{2} + 5) = 0$

c)
$$24x^{4} + 3x = 0$$

 $3x (8x^{3} + 1) = 0$
 $3x(2x+1)(4x^{2}-2x+1) = 0$
 $3x=0 \ 2x+1=0 \ 4x^{2}-2x+1=0$
 $x=0 \ x=-\frac{1}{2}$ $x=-\frac{1}{2}$ $x=-\frac{1$

d)
$$x^3 - 5x^2 - 9x + 45 = 0$$

 $(x+3)(x-3)(x-5) = 0$
 $(x-3)(x-5) = 0$

e)
$$x^{4} + 2x^{2} + 1 = 0$$

 $(x^{2} + 1)^{2} = 0$
 $x^{2} + 1 = 0$
 $(x^{2} + 1)^{2} = 0$

f)
$$x^{7} - 64x^{5} = 0$$

 $\chi^{5} (\chi^{2} - 64) = 0$
 $\chi^{5} (\chi + 8)(\chi - 8) = 0$
 $\chi^{5} (\chi + 8)(\chi - 8) = 0$
 $\chi^{5} = 0$ $\chi + 8 = 0$ $\chi - 8 = 0$
 $\chi = 0$ $\chi = -8$ $\chi = 8$
 $\chi = 0$ $\chi = -8$ $\chi = 8$

9)
$$-2x^7(x^2-2)^2(3x+4)=0$$

ex: Write a polynomial equation in standard form with integral coefficients and the given solutions.

a) 5, -2/3, 0
$$(X-5)(3x+2) X = 0$$

$$(3x^{2}-)3X-10) X = 0$$

$$(3x^{2}-)3x^{2}-10X = 0$$

ex: Write a polynomial equation in standard form with integral coefficients and the given solutions.

b) 2i, -2i, o multiplicity 2

$$(x-2i)(x+2i)x^{2} = 0$$

$$(x^{2}-4i^{2})x^{2} = 0$$

$$(x^{2}+4)x^{2} = 0$$

$$(x^{2}+4)x^{2} = 0$$

$$(x^{2}+4)x^{2} = 0$$

Review

ex: Evaluate using synthetic substitution.

Review

ex: Peform the indicated operation.

$$(x^2+x-6)-(5x^2-2x+3)$$