15.)
$$4\ln(-x) + 3 = 21$$

 $4\ln(-x) = 18$
 $4\ln(-x) = \frac{13}{4}$
 $-x = e^{18/4}$
 $-x = 90.017$
 $x = -90.017$

4.)
$$\frac{1}{3} = \frac{5}{1093}$$

 $\frac{1}{1093} = \frac{1}{1093}$
 $\frac{1}{1093} = \frac{1}{1093}$
 $\frac{1}{1093} = \frac{1}{1093}$
 $\frac{1}{1093} = \frac{1}{1093}$

$$3^{-x} = 5$$

2.)
$$|\log x| = |\sin x| = |\cos x| =$$

14.)
$$|094(-x)+|094(x+10)=2$$

 $|094(-x)+|094(x+10)=2$
 $-x^2-|0x=16$
 $-x^2-|0x-16=0$
 $x^2+|0x+|6=0$
 $x^2+|0x+|6=0$
 $x^2+|0x+|6=0$

10.)
$$5\ln x = 35$$

 $\ln x = 7$
 e
 $x = 1096.633$

8.)
$$\frac{e^{x+a}}{3} + \frac{5}{-5} = \frac{6}{-5}$$

$$\ln e^{x+a} = \ln 3$$

$$(x+2) \ln e = \ln 3$$

$$x = -2 + \ln 3$$

1.)
$$\int_{1}^{1} \int_{1}^{1} \int_{1}^{1}$$

26.)
$$2\log x + \log 7 = \log 14x$$

 $\log x^2 + \log 7 = \log 14x$
 $\log (x^2 - 7) = \log \log (x^2 - 7)$
 $\log (x^2 - 7) = \log \log (x^2 - 7)$
 $\log (x^2 - 7) = \log \log (x^2 - 7)$
 $\log (x^2 - 7) = \log \log (x^2 - 7)$
 $\log (x^2 - 7) = \log \log (x^2 - 7)$
 $\log (x^2 - 7) = \log \log (x^2 - 7)$
 $\log (x^2 - 7) = \log \log (x^2 - 7)$
 $\log (x^2 - 7) = \log \log (x^2 - 7)$
 $\log (x^2 - 7) = \log \log (x^2 - 7)$
 $\log (x^2 - 7) = \log \log (x^2 - 7)$
 $\log (x^2 - 7) = \log \log (x^2 - 7)$
 $\log (x^2 - 7) = \log \log (x^2 - 7)$
 $\log (x^2 - 7) = \log \log (x^2 - 7)$
 $\log (x$

A2: Finding Inverses of Exponential and Logarithmic Functions, Solving Exponential and Logarithmic Equations - Mixed Practice

© Randy Glasbergen / glasbergen.com

"If I work hard, I'll get good grades. If I get good grades, I'll go to a top college. If I go to a top college, I'll get a great job. If I get a great job, I'll make a lot of money.

If I make a lot of money, everyone will hate me.

That's why I didn't do my homework."

a)
$$f(x) = 2^{x+1} - 3$$

 $\chi = 2^{y+1} - 3$
 $|og_{z}(\chi + 3) = |og_{z}(\chi + 3)| = |og$

b)
$$f(x) = \log_5(x - 5) + 2$$

 $\chi = \log_5(y - 5) + 2$
 $\chi - 2 = \log_5(y - 5)$
 $5^{x-2} = y - 5$
 $5^{x-2} + 5 = f^{-1}(x)$

c)
$$h(x) = \ln x - 1$$

 $\chi = \ln y - 1$
 $\chi + 1 = \ln y$
 $e^{\chi + 1} = e^{-1(\chi)}$

d)
$$g(x) = 45^{x-6}$$

$$\log_5(X) = \log_5 5$$

$$log_s(x) = y - G$$

a)
$$5^{x+3} + 1 = 17$$

$$\log (5^{x+3}) + \log (6^{x+3}) \log 5 = \log 6$$

$$(x+3) \log 5 = 1.7227$$

$$x+3 = 1.7227$$

$$x=-1.277$$

b)
$$\log_{7}(x-2)(\frac{1}{7}\log_{7}(x+3)) = \log_{7} 14$$

 $\log_{7}(x^{2}+x-6) = \log_{7} |U|$
 $\chi^{2}+x-6-14=0$
 $\chi^{2}+x-2-0=0$
 $(x+s)(x-4)=0$

c)
$$log_3(7x + 3) = log_3(5x + 9)$$

 $7x + 3 = 5x + 9$
 $2x = 6$
 $x = 3$

$$\frac{d}{\log \left(\frac{1}{3}\right)^{x-1}} = 6$$

$$\frac{(x-1) \log \frac{1}{3}}{\log \frac{1}{3}} = \frac{\log 6}{\log \frac{1}{3}}$$

$$x-1 = -1.6309$$

$$x = -.631$$

e)
$$\log(5x - 11) = 2$$
 10
 $5x - 11 = 100$
 $X = 22.2$

$$f)\left(\frac{1}{3}\right)^{x-1} = 27^{x+9}$$

$$3^{-1(\chi-1)} = 3^{3(\chi+9)}$$

$$-\chi+1 = 3\chi+\chi$$

$$-26 = 4\chi$$

$$\frac{-26}{4} = \chi$$

9)
$$5^{2x+1} = 8$$

$$\log 5^{2x+1} = \log 8$$

$$(2x+1) = \frac{\log 8}{\log 5}$$

$$X = .146$$

h)
$$\log_4(2x+1) = \log_4(x+2) - \log_4 3$$

 $\log_4(2x+1) = \log_4\left(\frac{x+2}{3}\right)$
 $2x+1 = \frac{x+2}{3}$
 $6x+3 = x+2$
 $x=-1/5$

i)
$$3 - \ln(4x - 3) = 0$$

 $-\ln(4x - 3) = -3$
 $-\ln(4x - 3) = -3$

$$) 2\log_2(5x+7) - 1 = 9$$

$$8)2 \cdot 3^{2x} + 7 = 25$$

$$3^{2x} = 9$$

$$3^{2x} = 3$$

$$2x = 2$$

$$x = 1$$

$$\log_5 x + \log_5 (x - 12) = 3$$

$$\chi = 12 \pm \sqrt{144 - 4(1)(-125)}$$

(1)
$$y = 3^{x-1} + 2^{x}$$

(2) $y = \log_{2}(x+1)$
 $y = 3^{x-1} + 2^{x}$
 $y = x+1$
 $y =$