Simplifying radicals
Solving by quadratics by factoring
Complex numbers
Solving by square root methoa
Quadratic formula and the discriminant
Quadratic word problems

Solving Quadratics Using the Quadratic Formula

Let $a,b,c \in R$ such that $a \neq 0$. The solutions of the quadratic equation $ax^2 + bx + c = 0$ are:

Quadratic Formula:
$$x = \frac{-b \pm \sqrt{b^2 - 4aC}}{2a}$$

*Use the Quadratic Formula to solve a quadratic equation when... a quadratic equation is NOT factorable

or we cannot use square root method

ex: Solve.

a)
$$\chi^{2} + \chi - 4 = 0$$

$$\alpha = 1 \quad \chi = \frac{-1 \pm \sqrt{1^{2} - 4(1)(-4)}}{2(1)}$$

$$C = -4 \quad \chi = \frac{-1 \pm \sqrt{1 + -16}}{2}$$

$$\chi = \frac{-1 \pm \sqrt{17}}{2}$$

b.)
$$x^{2} + 2x + 5 = 0$$
 $\sqrt{1 - i}$
 $a = 1$
 $b = 2$
 $c = 5$

$$x = \frac{-2 \pm \sqrt{1 - 4(1)(5)}}{2(1)}$$

$$x = \frac{-2 \pm \sqrt{-16}}{2} = \frac{-2 \pm i \sqrt{16}}{2}$$

$$x = \frac{-2 \pm 4i}{2} = \frac{-2}{2} \pm \frac{4i}{2} = -1 \pm 2i$$

C.)
$$2x^{2} + 2x = 5 - 2x$$
 $(56 = 74.14)$
 $2x^{2} + 4x - 5 = 0$
 $0 = 2$ 0

$$d.) \quad 3x^{2} + 4x + 2 = 0 \quad | \sqrt{3} = \frac{14 - 24}{14 - 24}$$

$$A = 3 \quad x = \frac{-4 \pm \sqrt{4^{2} - 4(3)(2)}}{2(3)}$$

$$b = 4 \quad x = \frac{-4 \pm \sqrt{-8}}{6}$$

$$x = \frac{-4 \pm \sqrt{-8}}{6}$$

The Discriminant:

- In the quadratic formula, the expression b2-4ac is called the discriminant.
- The discriminant is used to determine the types of solutions for the equation

<u>Using The Discriminant:</u>

Value of discriminant	6-4ac>0	b-4ac<0	6-40c=0
Number of solutions	2	2	repeated
Type of solutions	real	imaginary	real
Graph of $y = ax^2 + bx + c$	1 1	1	1

ex: Find the discriminant and give the number and type of solutions of the equation.

a)
$$x^{2}-8x+13=-4$$

 $\chi^{2}-8\chi+17=0$

$$0 = 1$$

$$0 = -8$$

$$0 = 17$$

$$0 = -8$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0 = 17$$

$$0$$

b)
$$x^{2}-8x+16=0$$

$$A = 1 \qquad b^{2}-4aC$$

$$b = -8 \qquad (-8)^{2}-4(1)(1b)$$

$$C = 16 \qquad (94-64)$$

1 real solution

ex: The graph of $y = ax^2 + bx + c$ r the solutions of $ax^2 + bx + c = 0$ are given. Determine if the discriminant is positive, negative, or zero. Explain your reasoning.

a)

zero

Solve.

$$\chi^{2} - 3x - 18 = 0$$

 $(x-6)(x+3) = 0$
 $\chi = 6, -3$

$$3(x+2)-1=20$$

$$\sqrt{(x+2)^{2}+7}$$

$$x+2=\pm\sqrt{7}$$

$$x=-2\pm\sqrt{7}$$

Simplify

$$3\sqrt{84} = 3\sqrt{4.21}$$

= $6\sqrt{21}$

$$3\sqrt{84} = 3\sqrt{4.21} (2+i)(3-4i)$$

$$= (6\sqrt{21}) (6-8i+3i-4i)$$

$$= (6-5i+4) = (0-5i)$$