8.)
$$(10x^{2}-9x+5)\div(2x-1)$$

 $5x-2+\frac{3}{9x-1}$
 $2x-1)10x^{2}-9x+5$
 $-(10x^{2}-5x)$
 $-(-4x+5)$
 $-(-4x+3)$
 3

(a)
$$(x^{4} + 3x^{3} - 4x - 11) \div (x + 3)$$

-3 $\begin{bmatrix} 1 & 3 & 0 & -4 & -11 \\ 1 & -3 & 0 & 0 & 12 \end{bmatrix}$
 $\begin{bmatrix} 1 & 0 & 0 & -4 & 1 \\ 1 & 0 & 0 & -4 & 1 \end{bmatrix}$
 $\begin{bmatrix} 1 & 0 & 0 & -4 & 1 \\ 1 & 0 & 0 & -4 & 1 \end{bmatrix}$

9.)
$$(3a^{3} - 8a^{2} + 6a - 26) \div (a - 3)$$

$$3a^{2} + a + 9 + \frac{1}{a - 3}$$

$$a^{-3})3a^{3} - 8a^{2} + 6a - 26$$

$$-(3a^{3} - 9a^{2})$$

$$a^{2} + 6a$$

$$-(a^{2} - 3a)$$

$$-(a^{2} - 3a)$$

$$-(a^{2} - 3a)$$

A2 - Solving Polynomial Equations by Factoring

Evaluating Polynomials There are two ways to evaluate polynomial functions: 1. direct substitution 2. synthetic substitution

Direct Substitution (i.e. "PLUG IN")

ex: Find the indicated polynomial value using direct substitution.

a)
$$f(x) = x^2 - 5x + 2$$
, $f(13) = ?$
 $f(13) = 13 - 5(13) + 2$
 $= 169 - 65 + 2$
 $= 169 - 63 = 106$

<u>Synthetic Substitution</u> - substitution using a chart of coefficients

*Before using synthetic substitution,

- the polynomial must be in standard form
- consider if all terms are present

ex: Find the indicated value using synthetic substitution.

a)
$$f(x) = x^2 - 5x + 2$$
, $f(13) = 1/106$

ex: Find the indicated value using synthetic substitution.

b)
$$g(x) = x^3 + 4x^2 - 1$$
, $g(6) = ?$

$$6 \begin{vmatrix} 1 & 4 & 0 & -1 \\ 6 & 60 & 360 \end{vmatrix}$$

$$10 60 (359)$$

ex: Find the indicated value using synthetic substitution.

c)
$$m(x) = 5x^4 + 2x$$
 $m(-2) = ?76$
 -2 5 0 0 2 0
 -10 20 -40 76
 5 -10 20 -38 76

Theorem:

A polynomial equation with degree n has _____ solutions.

Vocabulary:

solutions/roots - answers to an equation

<u>zeros</u> - quantities that make a function equal to zero

ex. Solve by factoring.

Solutions - values of X.

a)
$$x^2 - 8x + 15 = 0$$

$$(x-5)(x-3) = 0$$

$$(x-5)(x-3) = 0$$

$$x-5=0 \quad x-3=0$$

b)
$$2x^{4} + 7x^{2} - 15 = 0$$

$$(2x^{2} - 3)(x^{2} + 5) = 0$$

$$2x^{2} - 3 = 0$$

$$x^{2} + 5 = 0$$

$$x^{2} + 5 = 0$$

$$x^{2} = -5$$

$$x = \pm \sqrt{3} \cdot \sqrt{2}$$

c)
$$24x^4 + 3x = 0$$

d)
$$x^{3}-5x^{2}-9x+45=0$$

 $x^{2}(x-5)-9(x-5)=0$
 $(x^{2}-9)(x-5)=0$
 $(x+3)(x-3)(x-5)=0$
 $(x+3)(x-3)(x-5)=0$

e)
$$x^{4} + 2x^{2} + 1 = 0$$

$$(x^{2} + 1)(x^{2} + 1) = 0$$

$$(x^{2} + 1) = 0$$

$$x^{2} + 1 = 0$$

$$x$$

f)
$$x^{7}-64x^{5}=0$$

 $\chi^{5}(\chi^{2}-64)=0$
 $\chi^{5}(\chi-8)(\chi+8)=0$
 $\chi^{5}=0$ $\chi-8=0$ $\chi+8=0$
 $\chi=0$ $\chi=8$ $\chi=-8$
muth of

Solve.

$$\chi^{2}(x-5)(3x-1)^{4} = D$$

 $\chi^{2}=0$ $x-5=0$ $3x-1=0$
 $\chi=0$ $x=5$
muthof muthof $x=3$