A2: Graphs of Exponential Functions

Exponential Functions

$$f(x) = ab^{x}$$

$$a \neq 0, \quad b > 0, \quad b \neq 1$$

b is called the growth or decay factor

Graphs of Exponential Functions

$$f(x) = ab^x$$

Exponential Growth b > 1

*the RIGHT side of the graph moves AWAY from the asymptote

Exponential Decay 0 < b < 1

*the RIGHT side of the graph moves TOWARDS the asymptote ex: Sketch. Then state the domain and range and classify as

growth or decay.

$$2 \cdot 2^{x-1} \cdot 4$$

a)
$$y = 2 \cdot 3^{x-1} + 4$$

$$\frac{X}{2} = \frac{1}{2} = \frac{1}$$

ex: Sketch. Then state the domain and range and classify as growth or decay. $\gamma + 2 = 0$

b)
$$y = 3\left(\frac{1}{2}\right)^{x+2}$$

$$-3 | 3(\frac{1}{2}) - 1 = 5$$

$$-2 | 3(\frac{1}{2}) - 1 = 2$$

$$-1 | 3(\frac{1}{2}) - 1 = \frac{3}{2} - 1 = \frac{1}{2}$$

ex: Sketch. Then state the domain and range and classify as growth or decay.

c)
$$y = -\left(\frac{2}{3}\right)^{x} + Q_{x}$$

$$\frac{1}{3} + Q_{x}$$

$$\frac{1}{3} - \left(\frac{2}{3}\right)^{2} = -\frac{3}{2}$$

$$-\left(\frac{2}{3}\right)^{2} = -\frac{2}{3}$$

$$-\left(\frac{2}{3}\right)^{2} = -\frac{2}{3}$$

$$-2 - \left(\frac{2}{3}\right)^{2} = -\frac{9}{4}$$

ex: Sketch. Then state the domain and range and classify as

growth or decay.

d)
$$y = 2.5^{4-x}$$
 $y = 2.5^{4-x}$
 $y = 2.5^{5-x}$
 $x = 2.5^{5-x}$

e)
$$y = e^{x+3} - 1$$

ex: WITHOUT graphing determine if the function represents growth or decay, then state the growth or decay factor.

a)
$$y = \frac{1}{2} \cdot 3^{x-4} + 5$$

a) $y = \frac{1}{2} \cdot 3^{x-4} + 5$

ex: WITHOUT graphing determine if the function represents growth or decay, then state the growth or decay factor.

b)
$$y = -\left(\frac{4}{5}\right)^{x+1}$$

decay