7.2: Inference as Decision

Type 1 and Type 2 Errors

Type I and Type II Errors

- If we reject the null hypothesis when the null is true, this is a Type 1 Error (False Positive)
- If we accept the null hypothesis when the alternative hypothesis is true, this is a Type II Error (False Negative)

Type I and Type II Errors

The Truth

	H _o True	H _a True
Reject H _o	Type I	Correct Decision
Accept H _o	Correct Decision	Type II
		+

My D E C I S I

In medical testing, Ho is usually the assumption that a person is healthy. The alternative is that he or she has the disease.

- A Type I Error is a
 False positive; a
 healthy person is
 diagnosed with the
 disease (Reject H_o
 even though H_o true)
- A Type II Error is a

 False negative; an infected person is diagnosed as disease free (accept H_o even though H_a true)

Jury Trial

- Type I Error: if jury convicts an innocent person (Reject H_o even though H_o true)
- Type II error occurs if the jury fails to convict a guilty person (Accept H_o even though Ha true)

A certain potato chip company samples chips to see if they meet a certain standard.

H_o: the batch meets the standard Ha: The chips do not meet the standard

- Type 1: Rejecting a good batch (hurts the company)
- (Reject H_o even though H_o is true)

- Type II: Accepts a bad batch (hurts the consumer)
- (Accept H_o even though Ha is true)

How to reduce errors?

- Increase alpha
- Consider a particular alternative farther away from mu.
- Increase the sample size
- Decrease sigma