9.6: Modeling

Mathematical Model

A mathematical model is a mathematical function that 'fits' or describes real-world data.

We will be choosing between four types of functions and then making a prediction

using the function.

Linear Quadratic Exponential Power

Quadratic

$$y = 4.2x^2 - 2.7x + 3$$

predict y when $x = 3$
 $\hat{y} = 32.7$

Linear:
$$y = a + bx$$
 or $y = ax + b$

Quadratic:
$$y = ax^2 + bx + c$$

Exponential:
$$y = ab^x$$

♦ Power:
$$y = ax^b$$

Exponential: $y = 2^x$

Quadratic: $y = 2x^2 - 8x + 9$

Power: $y = x^2$

- Look for a Pattern in the Graph: Examine the graph of the plotted points and compare the basic pattern to the known generic graphs.
- ❖ Find and Compare Values of R²: Select functions that result in larger values of R², because such larger values correspond to functions that better fit the observed points.
- Think: Use common sense. Don't use a model that lead to predicted values known to be totally unrealistic.

(1) Quadratic: $ax^2 + bx + c$ $y = 2x^2 + 1x$ Predict y when x = 10 y = 210

Linear: 9199 Duad: 99986 EXP. 921 Pur: 921

$$y = a \cdot b^{x}$$

 $y = 2.95 (1.34)^{x}$
predict y
when $x = 9$
 $y = 41.09$

HW question #5 (there are 20 years!)
For data with years, convert to 'counting' numbers.

x 1980 1981 1982 y 16 24 20

Year 1980 will be year 1; Year 1981 will be year 2 etc.