

REGRESSION EQUATION

- The equation of the straight line that represents the relationship is the regression equation.
- The straight line thru the data is the regression line.
- Regress -tend to revert to more typical
- Also called the line of best fit or the least squares line

REGRESSION EQUATION

- X is the independent variable (it's the one you used to pick in algebra) or predictor variable or explanatory variable
- Y is the dependent variable or response variable

ROUNDING RULE

- Round b₀ and b₁ to three sig digits at the end of the calculation
- The book might round differently so your answer might be slightly off

FIND THE EQ OF THE REGRESSION LINE $\hat{y} = 2.862x - .957$

USING THE REGRESSION EQ TO MAKE PREDICTIONS

- Can only be done if r indicates there is a linear correlation
- of there is a linear correlation, the best predicted y-value is found by plugging the given x-value into the linear regression eq and solving for y
- If there isn't a linear correlation, the best predicted y-value is \overline{y} (the sample mean of y)

IN EACH CASE, FIND THE BEST PREDICTED VALUE OF Y GIVEN THAT X=2.00

 $\frac{1}{6}$ r= -.123, \overline{y} = 8, n = 30 and the equation of the regression line is $\hat{y} = 7 - 2x$

r = -.567, $\overline{y} = 8$, n = 30 and the equation of

$$\hat{y} = -.567$$
, $\hat{y} = 8$, $\hat{y} = 30$ and the equation of the regression line is $\hat{y} = 7 - 2x$
 $\hat{y} = 7 - 2x$
 $\hat{y} = 8$
 $\hat{y} = 7 - 2x$
 $\hat{y} = 7 - 2(2) = 3$

P.528
$$7 = .0677x - 1.13$$

$$7 = .517$$

$$7 = .602$$
Predict y
Since the line does not have significant linear correlation, the mean of the y's would be the prediction