7.4: Testing a claim about a mean: sigma known

Assumptions for Means, sigma known

- 1) SRS
- 2) Sigma known (6 known)
- 3) n > 30 or normally distributed

O: population st. dev.

 n = 35; sigma is known; population is not normally distributed

> Yes; o known n>30

2. n = 25; sigma is not known; population is normally distributed

No o unknown

3. n = 25; sigma is known; population is not normally distributed

NO n < 30 not normal

4. n = 15; sigma is known; population is normally distributed

Yes; o known normal

Test statistic for means, sigma known

 $Z = \frac{\left(\overline{X} - \mathcal{U}\right)}{\left(\overline{5} / \sqrt{n}\right)}$ X : mean of sample $\mathcal{U} : \text{mean of population}$ $\mathcal{T} : \text{population st. dev.}$ $\mathcal{T} : \text{population st. dev.}$ $\mathcal{T} : \text{sample size}$

Conduct a 6 step hypothesis test

x=120, n = 50, and 6 = 12, test the claim that the mean IQ score of statistics professors is greater than 118. Use a .05 significance level. Use the p-value method

- 1. State Ho & Ha; write a sentence for the claim

 Ho: $\mu = 118$ Ha: $\mu > 118$ Ha: mean IR score

 claim: mean IR score

 claim stat. pro-sessors

 of stat. pro-sessors

 is greater than 118.
- 2. State the assumptions.

 SRS

 KNOWN

 N730 05
- 3. State when to reject null for p-value method.

 reject Ho if pvalve < . 05

- 4. Calculate the test statistic.
- $\frac{Z = X^{-}M}{\sigma/\sqrt{n}} = \frac{(120 118)}{(12/\sqrt{50})}$ = 1.179
- 5. Sketch and find the p-value.

 Determine whether to reject the null.

 Explain.
- 6. Conclusion
 There is not sufficient
 evidence to support the
 claim that the mean IQ
- is greater than 118.

Conduct a 6-step hypothesis test

The mean body temperature of 106 peole was 98.2°F. Assume that \$\infty = 0.62\$. Use a significance level to test the claim that the common belief that the mean body teperature is 98.6°F. Use the traditional method.

3. Sketch bell curve. Determine the critical value. State when to reject null.

4. Calculate the test statistic.

$$\frac{7}{2} = \frac{(98.2 - 98.6)}{(.62/\sqrt{106})}$$
$$= -6.642$$

5. Determine whether to reject the

There is sufficient evidence to warrant rejection of the claim that the mean body temperature is 98.6.