Chapter 7: Hypothesis Testing

Hypothesis: a claim or statement about a property of a population

Hypothesis Test (Test of Significance): standard procedure for testing a claim about a property of a population

7-2 Basics of Hypothesis Testing

_

NULL HYPOTHESIS (Ho)

a statement that the value of a population proportion such as p, is equal to some claimed value. Here are some typical null hypotheses:

 H_0 : $\mu = 26.6$ or H_0 : p = .33

To test a null hyp, assume it is true and then reach a conclusion to reject H_0 or fail to reject it.

ALTERNATIVE HYPOTHESIS (H1 OR Ha)

a statement that the parameter has a value that differs from the null hypothesis.

Ex.
$$H_1$$
: p < .05
 H_1 : μ > 24.3
 H_1 : $\mu \neq 17.2$

When forming a hypothesis, you must use an alternative hypothesis-in other words, your claim must be expressed using >, <, or #.

Ex. Ford claims that if it has developed a new technology that will raise the mpg of its cars so that the mean becomes greater than 35.

Ho: $\mu = 35$ Ha: $\mu > 35$

Write the null and alt hyp in symbolic form for each claim.

1) The proportion of students who copy answers is less than .45. $H_o: P = .45$

Ha: P < .45

2) The mean age of Fun College is 19.6 years.

 $H_0: M = 19.6$ $Ha: M \neq 19.6$ 3) The percentage of students who drive to school is not equal to 48%.

$$H_0: P = .48$$

 $H_a: P \neq .48$

Critical Region, Significance Level, Critical Value,

The <u>critical region</u> (rejection region) is the set of all values of the test statistic that cause us

to reject the null hypothesis.

Find the <u>critical z values</u>. Assume that a normal distribution applies in each case.

$$Z_{cr} = \pm 2.576$$
 .01

5)
$$\propto = .02$$
, H₁ is p < .35
left+ail

6)
$$\propto$$
 = .01 H₁ is p > .24 right tail

