

toss a coin 3 times

HHH

P(notails) = 
$$\frac{1}{8}$$

HH

HT

HT

TH

P(at least 1+ail)

The probability of "at least one" and "none" are complements!!!

$$P(at least one) + P(none) = 1$$



P(at least one) = 1 - P(none)

Toss a coin 5 times.

What's the probability there are no tails?

$$P(\text{notails}) = \left(\frac{1}{2}\right)^5 = \frac{1}{32} = .03|3$$

What's the probability there is at least one tail?

$$P(\text{at least 1+ail}) = |-P(\text{notails})|$$

$$= |-\frac{1}{32}|$$

$$= \frac{31}{32} = .969$$

4 question multiple choice quiz, 5 choices for each question.

P(none correct) = 
$$\left(\frac{4}{5}\right)^4 = .410$$
  
P(at least 1 correct) =  $1 - P$  (hone correct)  
=  $1 - .410$   
= .590

Suppose 11% of the population is left handed. 30 people are randomly selected.

What's the probability that none are 30 left handed? P(none left) = (.89) = .0303

What's the probability that at least one is left handed?

$$P(\text{at least}) = |-P(\text{no left})|$$

$$= |-P(\text{handea})|$$

$$= |-(.89)^{30} = .970$$

There are 6 questions on a multiple choice quiz. There are four choices for each question. You randomly guess the answer to each question

What's the probability that none are correct?

P(none correct) = 
$$\left(\frac{3}{4}\right)^6$$

What's the probability that at least one is correct?

$$P(\text{at least }) = |-P(\text{none})|$$

$$= |-P(\text{none})|$$

$$= |-(\frac{3}{4})^{6}| = .822$$

Suppose 67% of high school students trick or treat.

If I randomly select 5 students, what's the probability

that at least one of them will trick or treat.

P(none-trickor-treat) =  $(.33)^5$ P(at least 1) =  $[-(.33)^5]$