3.3: Addition Rule

P(A or B) = probability that event A or event B occurs or they both occur

P(A or B) = P(A) + P(B) - P(A and B)

overlap

p.138

Survived Died Total

332 1360	Women 318	Boys 29	Girls 27	Totals 706
1360	104	35	18	1517
1692	422	64		2223

Is there overlap?

Find the probability of selecting a man or a woman

$$P(Mor W) = \frac{1692}{2223} + \frac{422}{2223} - 0$$

$$= \frac{2114}{2223} = .951$$

	Men	Women	Boys	Girls	Totals	
Survived	332	318	29	27	706	Is there
Died	1360	104	35	18	1517	overlap
Total	1692	422	64		2223	Yes

Find the probability of selecting a woman or someone who survived

or someone who survived
$$P(W_{or} S) = P(W) + P(S) - P(W_{or} S)$$

$$\frac{422}{2223} + \frac{705}{2223} - \frac{318}{2223} = \frac{810}{2223}$$

$$= .364$$

Survived	Men 332	Wome 318	en Boys 29	Girls 27	Totals 706	Is there
Died	1360	104	35	18	1517	overlap?
Total	1692	422	64		2223	Yes

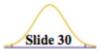
Find the probability of selecting a boy or someone who died

$$P(BorD) = \frac{64}{2223} + \frac{1517}{2223} - \frac{35}{2223} = .695$$

$$P(BorD) = \frac{29+35+1360+104+18}{2223}$$

	Men	Women	Boys	Girls	Totals	
Survived	332	318	29	27	706	Is there
Died	1360	104	35	18	1517	overlap?
Total	1692	422	64		2223	overiap:

Find the probability of selecting a man or someone who died

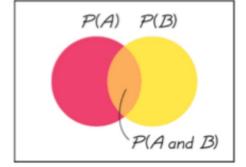

$$P(MorD) = \frac{332 + 1360 + 104 + 35 + 18}{2223}$$
= .832

	Men	Women	Beys	Girls	Totals	
Survived	332	318	29	27	706	
Died	1360	104	35	18	1517	Is there
Total	1692	422	64	× .	2223	overlap?
Find the probability of selecting a child Yes						

Find the probability of selecting a child or someone who did not survive.

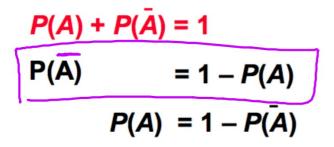
$$P(C_{or}D) = \frac{1573}{2223}$$

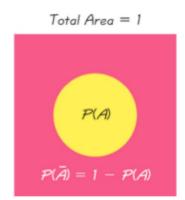
= .708


Definition

Events A and B are disjoint (or mutually exclusive) if they cannot both occur

together.


Total Area = 1



P(A) and P(A) are mutually exclusive

No overlap = disjoint

All simple events are either in A or \bar{A} .

Complementary Events

 A poll showed that 61% of Americans say they believe that life exists elsewhere in the galaxy. What is the probability of randomly selecting someone NOT having that belief? Are these events mutually exclusive?

Event A: randomly selecting a senior Event B: randomly selecting a junior

Yes; no student will be in both categories.

Are these events mutually exclusive?

Event A: randomly selecting a doctor Event B: randomly selecting a female

No, there are female doctors.

P.137 1,3,7,9,10,11,12