3.2: Fundamentals of Probability

Event: a collection of results or outcomes of a procedure.

Example: When tossing a coin, an event

would be "Tails"

Sample space: all possible simple events Example: When tossing a coin, the sample space would be {H,T} (there are only two possible outcomes)

Toss a coin 3 times

a) Give an example of an event.

P - denotes a probability.

A, B, and C - denote specific events.

P(A) - denotes the probability of event A occurring.

Determine the probability when tossing a coin 3 times:

P(all tails) =
$$\frac{1}{8}$$
 = .125

P(exactly two tails) =
$$\frac{3}{8}$$
 = .375

Experimental vs Theoretical Probability

 A coin is tossed 200 times, of which 95 results were "tails".

• P(tails) =

- P(tails) = 95/200 (Experimental; I tossed the Coin)
- · What is the actual probability of tossing "Tails"?

 $\frac{100}{200} = \frac{1}{2}$

• Roll a die: If the die is fair, what's the probability of rolling a "4"?

•
$$P(4) = \frac{1}{6} = .167$$

Probability values

- The probability of an impossible event is 0.
- **♦** Example: If you roll a die, the probability of rolling a 7 is impossible. P(7) = 0
- The probability of an event that is certain to occur is 1.
- Example: If you roll a die, the probability of rolling a number is certain. P(number) = 1
 - $0 \le P(A) \le 1$ for any event A.

Which values could <u>not</u> be probabilities?

1.2 8/9

1/3 .326

sqrt(10) 7/3

$$P(\bar{A}) = 1 - P(\bar{A})$$

The <u>complement</u> of event A, denoted by A, consists of all outcomes in which the event A does **not** occur.

$$P(A) = .72$$

 $P(\bar{A}) = |-.72 = .28$

If
$$P(A) = .546$$
 then
$$P(\overline{A}) = .454$$

There are 15 girls and 20 boys in a class. Find the probability of selecting

a girl?
$$P(G) = \frac{15}{35} = .429$$

a boy?
$$P(B) = \frac{20}{35} = .571$$

not a boy?
$$P(\overline{B}) = 1 - P(B) = 1 - .571$$

= .429

There are 5 red marbles, 7 green marbles, and 8 yellow marbles.

Find the probability of selecting a marble that is

Red
$$P(R) = \frac{5}{20} = .25$$

Not yellow $P(\overline{y}) = \frac{12}{20} = .6$
Orange $P(0) = 0$

Rounding rule for probabilities 3 Signigicant digits

• 0.00321 = 0.00321

.0000582468

.0000582

$$\frac{17}{100,000} = 1.7 E - 4$$

$$1.7 \times 10^{-4} = 0.00017$$

$$\frac{6}{45,587} = 1.31616 E - 4$$

$$0.000132$$

Unusual probability values have a probability value less than 0.05

(Less than 5%)

P.128 1-8 A11 11-19 odd