AP Calculus AB
Set 9 Answers

a	$y=10^{6} e^{\frac{-t}{6} \ln 2}=10^{6} \cdot 2^{-\frac{t}{6}}$
b	Decreasing at $10^{5} \ln 2 \mathrm{gal} /$ year.
c	$6 \frac{\ln 20}{\ln 2}$ years after starting.

\#2	$y=A e^{-\ln x} \quad$ or $\quad y=\frac{A}{x} \quad$ or $\quad x y=A$
a	or $\ln \|y\|=-\ln \|x\|+c$
b	$y=\frac{A e^{x^{2}}}{x}$ or $y=A e^{x^{2}-\ln x} \quad$ or $\ln \|y\|=x^{2}-\ln \|x\|+c$
c	$y=\frac{e^{x^{2+1}}}{x} \quad$ or $\quad \ln y=x^{2}-\ln x+1$

\#3
a When $x=3, \quad \frac{d y}{d x}=0, \quad \frac{d^{2} y}{d x^{2}}=1 / 2$
a $\therefore f$ has a local minimum at this point.
b $\quad y^{2}=6 x-x^{2}+16 \quad y=-\sqrt{6 x-x^{2}+16}$
\#4

a	$\frac{19}{2}$
0	$y=\left(\frac{1}{4} x^{2}+\frac{11}{4}\right)^{2}=\frac{1}{16}\left(x^{2}+11\right)^{2}$

a	see below
b	Slopes are negative at points (x, y) where $x \neq 0 \quad$ and $y<$
c	$y=2-2 e^{\frac{1}{5} x^{5}}$

\#6

a	See Below
b	$y-2=2(x+1)$
c	$y=\frac{4}{x^{2}+1}$

\#7

a	See Below
b	the line $y=1$ satisfies the d.e., so $c=1$
c	$y=1-\frac{\pi}{\sin (\pi x)+\pi}$ for all x.

