AP Calculus AB
 Set 9

\#1

Oil is being pumped continuously from a certain oil well at a rate proportional to the amount of oil left in the well; that is, $\frac{d y}{d t}=k y$, where y is the amount of oil left in the well at any time t. Initially there were $1,000,000$ gallons of oil in the well, and 6 years later there were 500,000 gallons remaining. It will no longer be profitable to pump oil when there are fewer than 50,000 gallons remaining.
(a) Write an equation for y, the amount of oil remaining in the well at any time t.
(b) At what rate is the amount of oil in the well decreasing when there are 600,000 gallons of oil remaining?
(c) In order not to lose money, at what time t should oil no longer be pumped from the well?

\#2

(a) Find the general solution of the differential equation $x y^{\prime}+y=0$.
(b) Find the general solution of the differential equation $x y^{\prime}+y=2 x^{2} y$.
(c) Find the particular solution of the differential equation in part (b) that satisfies the condition that $y=e^{2}$ when $x=1$.

\#3

Consider the differential equation $\frac{d y}{d x}=\frac{3-x}{y}$.
(a) Let $y=f(x)$ be the particular solution to the given differential equation for $1<x<5$ such that the line $y=-2$ is tangent to the graph of f. Find the x-coordinate of the point of tangency, and determine whether f has a local maximum, local minimum, or neither at this point. Justify your answer.
(b) Let $y=g(x)$ be the particular solution to the given differential equation for $-2<x<8$, with the initial condition $g(6)=-4$. Find $y=g(x)$.

Let f be the function satisfying $f^{\prime}(x)=x \sqrt{f(x)}$ for all real numbers x, where $f(3)=25$.
(a) Find $f^{\prime \prime}(3)$.
(b) Write an expression for $y=f(x)$ by solving the differential equation $\frac{d y}{d x}=x \sqrt{y}$ with the initial condition $f(3)=25$.
\#5
Consider the differential equation $\frac{d y}{d x}=x^{4}(y-2)$.
(a) On the axes provided, sketch a slope field for the given differential equation at the twelve points indicated. (Note: Use the axes provided in the test booklet.)

(b) While the slope field in part (a) is drawn at only twelve points, it is defined at every point in the $x y$-plane. Describe all points in the $x y$-plane for which the slopes are negative.
(c) Find the particular solution $y=f(x)$ to the given differential equation with the initial condition $f(0)=0$.

Consider the differential equation $\frac{d y}{d x}=\frac{-x y^{2}}{2}$. Let $y=f(x)$ be the particular solution to this differential equation with the initial condition $f(-1)=2$.
(a) On the axes provided, sketch a slope field for the given differential equation at the twelve points indicated. (Note: Use the axes provided in the test booklet.)

(b) Write an equation for the line tangent to the graph of f at $x=-1$.
(c) Find the solution $y=f(x)$ to the given differential equation with the initial condition $f(-1)=2$.

\#'7

Consider the differential equation $\frac{d y}{d x}=(y-1)^{2} \cos (\pi x)$.
(a) On the axes provided, sketch a slope field for the given differential equation at the nine points indicated.
(Note: Use the axes provided in the exam booklet.)

(b) There is a horizontal line with equation $y=c$ that satisfies this differential equation. Find the value of c.
(c) Find the particular solution $y=f(x)$ to the differential equation with the initial condition $f(1)=0$.

