AP Calculus AB
 Set 7

\#1 (no calculator)

Let R be the region in the first quadrant under the graph of $y=\frac{x}{x^{2}+2}$ for $0 \leq x \leq \sqrt{6}$?
(a) Find the area of R.
(b) If the line $x=k$ divides R into two regions of equal area, what is the value of k ?
(c) What is the average value of $y=\frac{x}{x^{2}+2}$ on the interval $0 \leq x \leq \sqrt{6}$?

\#2 (no calculator)

Let R be the region in the first quadrant enclosed by the graphs of $y=4-x^{2}$, $y=3 x$, and the y-axis.
a. Find the area of the region R.
b. Find the volume of the solid formed by revolving the region R about the x-axis.

\#3 (no calculator)

Let R be the region in the first quadrant that is enclosed by the graph of $y=$ $\tan (x)$, the x-axis, and the line $x=\frac{\pi}{3}$.
a. Find the area of R.
b. Find the volume of the solid formed by revolving R about the x-axis.

The region enclosed by the graphs of $y=\tan ^{2} x, y=\frac{1}{2} \sec ^{2} x$, and the y-axis.
a. Find the area of the region R.
b. Set up, but do not integrate, an integral expression in terms of a single variable for the volume of the solld formed by revolving the region about the x-axls.

\#5 (no calculator)

Let R be the region enclosed by the graphs of $\sqrt[4]{64 x}$ and $\mathrm{y}=\mathrm{x}$.
a. Find the volume of the solid generated when region R is revolved about the x-axis.
b. Set up, but do not Integrate, an integral expression in terms of a single variable the volume of the solid generated when the region R is revolved about the y-axls.

\#6 (no calculator)

Let R be the region enclosed by the graphs of $y=e^{x}, y=(x-1)^{2}$, and the line $x=1$.
a. Find the area of R.
b. Find the volume of the solid generated when R is revolved about the x axis.

\#7(no calculator)

Let R be the region between the graphs of $y=1+\sin (\pi x)$ and $y=x^{2}$ from $x=0$ to $x=1$.
(a) Find the area of R.
(b) Set up, but do not integrate an integral expression in terms of a single variable for the volume of the solid generated when R is revolved about the x-axis.

\#8 (no calculator)

Let R be the region in the first quadrant under the graph of $\mathrm{y}=\frac{1}{\sqrt{x}}$ for $4 \leq \mathrm{x} \leq 9$.
a. Find the area of R.
b. If the line $x=k$ divides the region R into two regions of equal area, what it is the value of k ?
d. Find the volume of the solid whose base is the region R and whose cross sections cut by planes perpendicular to the x-axis are squares.

\#9 (calculator)

Let R be the region bounded by the y-axis and the graphs of $y=\frac{x^{3}}{1+x^{2}}$ and $y=4-2 x$, as shown in the figure above.
(a) Find the area of R.
(b) Find the volume of the solid generated when R is revolved about the x-axis.
(c) The region R is the base of a solid. For this solid, each cross section perpendicular to the x-axis is a square. Find the volume of this solid.

\#10 (calculator)

Note: Figure not drawn to scale.
The shaded regions R_{1} and R_{2} shown above are enclosed by the graphs of $f(x)=x^{2}$ and $g(x)=2^{x}$.
(a) Find the x - and y-coordinates of the three points of intersection of the graphs of f and g.
(b) Without using absolute value, set up an expression involving one or more integrals that gives the total area enclosed by the graphs of f and g. Do not evaluate.
(c) Without using absolute value, set up an expression involving one or more integrals that gives the volume of the solid generated by revolving the region R_{1} about the line $y=5$. Do not evaluate.

\#11 (calculator)

Let R be the region enclosed by the graph of $y=\sqrt{x-1}$, the vertical line $\mathrm{x}=10$, and the x-axis.
a. Find the area of R.
b. Find the volume of the solid generated when R is revolved about the horizontal line $\mathrm{y}=3$.
c. Find the volume of the solid generated when R is revolved about the vertical line $x=10$.

\#12 (calculator)

Let R be the region enclosed by the graph of $y=\ln x$, the line $x=3$, and the x-axis.
(a) Find the area of region R.
(b) Find the volume of the solid generated by revolving region R about the x-axis.
(c) Set up, but do not integrate, an integral expression in terms of a single variable for the volume of the solid generated by revolving region R about the line $x=3$.

