AP Calculus AB Set 7

#1 (no calculator)

Let R be the region in the first quadrant under the graph of $y = \frac{x}{x^2 + 2}$ for $0 \le x \le \sqrt{6}$?

- (a) Find the area of R.
- (b) If the line x = k divides R into two regions of equal area, what is the value of k?

(c) What is the average value of $y = \frac{x}{x^2 + 2}$ on the interval $0 \le x \le \sqrt{6}$?

#2 (no calculator)

Let R be the region in the <u>first quadrant</u> enclosed by the graphs of $y = 4 - x^2$, y = 3x, and the <u>y-axis</u>.

- a. Find the area of the region R.
- b. Find the volume of the solid formed by revolving the region R about the <u>x-axis.</u>

#3 (no calculator)

Let R be the region in the first quadrant that is enclosed by the graph of y =

tan(x), the x-axis, and the line $x = \frac{\pi}{3}$.

- a. Find the area of R.
- b. Find the volume of the solid formed by revolving R about the x-axis.

The region enclosed by the graphs of $y = \tan^2 x$, $y = \frac{1}{2} \sec^2 x$, and the y-axis.

- a. Find the area of the region R.
- b. Set up, but do not integrate, an integral expression in terms of a single variable for the volume of the solid formed by revolving the region about the x-axis.

#5 (no calculator)

Let R be the region enclosed by the graphs of $\sqrt[4]{64x}$ and y = x.

- a. Find the volume of the solid generated when region R is revolved about the x-axis.
- b. Set up, but <u>do not integrate</u>, an integral expression in terms of a single variable the volume of the solid generated when the region R is revolved about the y-axis.

#6 (no calculator)

Let R be the region enclosed by the graphs of $y = e^x$, $y = (x - 1)^2$, and the line x = 1.

- a. Find the area of R.
- b. Find the volume of the solid generated when R is revolved about the xaxis.

#7 (no calculator)

Let R be the region between the graphs of $y = 1 + \sin(\pi x)$ and $y = x^2$ from x = 0 to x = 1.

- (a) Find the area of R.
- (b) Set up, but <u>do not integrate</u> an integral expression in terms of a single variable for the volume of the solid generated when R is revolved about the <u>x-axis</u>.

#8 (no calculator)

Let R be the region in the first quadrant under the graph of $y = \frac{1}{\sqrt{x}}$ for $4 \le x \le 9$.

- a. Find the area of R.
- b. If the line x = k divides the region R into two regions of equal area, what it is the value of k?
- d. Find the volume of the solid whose base is the region R and whose cross sections cut by planes perpendicular to the x-axis are squares.

#9 (calculator)

Let R be the region bounded by the y-axis and the graphs of $y = \frac{x^3}{1+x^2}$ and y = 4 - 2x, as shown in the figure above.

- (a) Find the area of R.
- (b) Find the volume of the solid generated when R is revolved about the x-axis.
- (c) The region R is the base of a solid. For this solid, each cross section perpendicular to the x-axis is a square. Find the volume of this solid.

#10 (calculator)

Note: Figure not drawn to scale.

The shaded regions R_1 and R_2 shown above are enclosed by the graphs of $f(x) = x^2$ and $g(x) = 2^x$.

- (a) Find the x- and y-coordinates of the three points of intersection of the graphs of f and g.
- (b) Without using absolute value, set up an expression involving one or more integrals that gives the total area enclosed by the graphs of f and g. Do not evaluate.
- (c) Without using absolute value, set up an expression involving one or more integrals that gives the volume of the solid generated by revolving the region R_1 about the line y = 5. Do not evaluate.

#11 (calculator)

Let R be the region enclosed by the graph of $y = \sqrt{x-1}$, the vertical line x = 10, and the x-axis.

- a. Find the area of R.
- b. Find the volume of the solid generated when R is revolved about the horizontal line y = 3.
- c. Find the volume of the solid generated when R is revolved about the vertical line x = 10.

#12 (calculator)

Let *R* be the region enclosed by the graph of $y = \ln x$, the line x = 3, and the *x*-axis.

- (a) Find the area of region R.
- (b) Find the volume of the solid generated by revolving region R about the x-axis.
- (c) Set up, but <u>do not integrate</u>, an integral expression in terms of a single variable for the volume of the solid generated by revolving region R about the line x = 3.