
AB Related Rates Practice

1)

The sides of the rectangle above increase in such a way that $\frac{dz}{dt} = 1$ and $\frac{dx}{dt} = 3\frac{dy}{dt}$. At the instant when x = 4 and y = 3, what is the value of $\frac{dx}{dt}$?

- (A) $\frac{1}{3}$

- (B) 1 (C) 2 (D) $\sqrt{5}$ (E) 5

2)

The radius r of a sphere is increasing at the uniform rate of 0.3 inches per second. At the instant when the surface area S becomes 100π square inches, what is the rate of increase, in cubic inches per second, in the volume V? $\left(S = 4\pi r^2 \text{ and } V = \frac{4}{3}\pi r^3\right)$

- (A) 10π
- (B) 12π
- (C) 22.5π
- (D) 25π
- 30π

3)

The volume of a cone of radius r and height h is given by $V = \frac{1}{3}\pi r^2 h$. If the radius and the height both increase at a constant rate of $\frac{1}{2}$ centimeter per second, at what rate, in cubic centimeters per second, is the volume increasing when the height is 9 centimeters and the radius is 6 centimeters?

- (A) $\frac{1}{2}\pi$

- (E) 108π

4)

The area of a circular region is increasing at a rate of 96π square meters per second. When the area of the region is 64π square meters, how fast, in meters per second, is the radius of the region increasing?

- (A) 6
- (B) 8

- (C) 16 (D) $4\sqrt{3}$ (E) $12\sqrt{3}$

The top of a 25-foot ladder is sliding down a vertical wall at a constant rate of 3 feet per minute. When the top of the ladder is 7 feet from the ground, what is the rate of change of the distance between the bottom of the ladder and the wall?

- (A) $-\frac{7}{8}$ feet per minute
- (B) $-\frac{7}{24}$ feet per minute
- (C) $\frac{7}{24}$ feet per minute
- (D) $\frac{7}{8}$ feet per minute
- (E) $\frac{21}{25}$ feet per minute

6)

The radius of a circle is decreasing at a constant rate of 0.1 centimeter per second. In terms of the circumference C, what is the rate of change of the area of the circle, in square centimeters per second?

- (A) $-(0.2)\pi C$
- (B) -(0.1)C
- (C) $-\frac{(0.1)C}{2\pi}$
- (D) $(0.1)^2 C$
- (E) $(0.1)^2 \pi C$

7)

When the area in square units of an expanding circle is increasing twice as fast as its radius in linear units, the radius is

- (A) $\frac{1}{4\pi}$ (B) $\frac{1}{4}$ (C) $\frac{1}{\pi}$ (D) 1

- (E) π

Answers

- 1 B
- 2 E 3 C
- 4 A
- 5 D 6 B
- 7 C