Quadratic Word Problems

1. Find the largest possible three consecutive integers such that the product of the first and the second is equal to the product of -6 and the third.
2. The length of a rectangle is 3 inches more than its width. If the length of the diagonal is 15 inches, find the dimensions of the rectangle.
3. The width of a rectangle is 16 feet less than 3 times the length. If the area is 35 square feet, find the dimensions of the rectangle.
4. The product of two consecutive positive odd integers is 1 less than four times their sum. Find the two integers.
5. When the dimensions of a cube are reduced by 4 in on each side, the surface area of the new cube is 864 square inches. What were the dimensions of the original cube?
6. A rectangular lawn measuring 8 m by 5 m is surrounded by a flower bed of uniform width. The combined area of the lawn and the flower bed is $154 \mathrm{~m}^{2}$. What is the width of the flower bed?
7. A model rocket is launched from the roof of a building. Its flight path is modeled by $h=-5 t^{2}+30 t+10$ where h is the height of the rocket above the ground in meters and t is the time after the launch in seconds.
a) What is the initial height of the rocket?
b) At what time does the rocket reach its maximum height?
c) What is the maximum height of the rocket?
d) At what time(s) does the rocket reach a height of 10 m ?
8. The height $h(t)$ in feet of an object t seconds after it is propelled straight up from the ground with an initial velocity of $64 \mathrm{ft} / \mathrm{s}^{2}$ is modeled by the equation $\mathrm{h}(\mathrm{t})=-16 \mathrm{t}^{2}+64 \mathrm{t}$.
a) What is the initial height of the object?
b) At what time will the object reach its maximum height?
c) When will the object hit the ground?
9. Suppose that one leg of a right triangle is 12 inches while the hypotenuse is $4 \sqrt{10}$ inches. Find the length of the other leg.
10. The three sides of a right triangle form three consecutive even numbers. Find the lengths of the three sides, measured in inches.
11. The height h (in feet) of a volleyball t seconds after it is hit can be modeled by $h=-16 t^{2}+48 t+4$. Find the volleyball's maximum height.
12. The function $y=-0.03(x-14)^{2}+6$ models the jump of a red kangaroo where x is the horizontal distance (in feet) and y is the corresponding height (in feet).
a) What is the kangaroo's maximum height?
b) How long is the kangaroo's jump?
13. Challenge: The back yard of a home is a rectangle 15 m by 20 m . A garden of uniform width is to be built around the edge leaving a grass area inside. The area of the grass is to be the same as the area of the garden. What is the width of the garden?
14. Challenge: Jane bought a number of watermelons at Pusateri's for $\$ 150$. If each watermelon had been $\$ 5$ more, 5 fewer could have been purchased. Find the price of each watermelon. (Hint: let x be the number of watermelons and ξy be the cost of each).

ANSWERS

1. $-3,-2,-1$
2. 9×12 inches
3. 7 in by 5 in
4. 7,9
5. 16 by 16 by 16 inches
6. 3 m
7. a) 10 meters b) 3 sec, c) 55 meters d) $o \mathrm{sec}$ and 6 sec
8. a) oft b) 2 sec c) 4 sec
9. 4
10. $6,8,10$ inches
11. 40 ft
12. a) 6 ft b) 28 ft
13. 2.5 meters
14. \$10
