AP Style Polar Questions

1. (CALCULATOR) Let *S* be the region in the first quadrant bounded by the two graphs
$$y = \frac{2}{3}x$$
,
 $y = \sqrt{1 - \frac{x^2}{4}}$ and the *x*-axis The line and the curve intersect at point *P*.
a) Find the coordinates of *P*.
b) Set up and evaluate an integral expression that calculates the area of region *S*.
c) Find a polar equation to represent curve $y = \sqrt{1 - \frac{x^2}{4}}$.
d) Use the polar equation in (c) to set up and evaluate an integral expression that gives the area of
the region *S*.
c) (CALCULATOR) Let $r = \theta + \cos(3\theta)$ for $\frac{\pi}{2} \le \theta \le \frac{3\pi}{2}$, where *r* is measured in meters and θ is
measured in radians.
a) Find the area bounded by the curve and the *y*-axis.
b) Find the angle θ that corresponds to the point on the curve with *y*-coordinate -1.
c) For what values of θ , $\pi \le \theta \le \frac{3\pi}{2}$ is $\frac{dr}{d\theta}$ positive? What does this say about *r*?
3. (CALCULATOR) Let *R* be the region bounded by $r = \frac{4}{1 + \sin \theta}$ for $0 \le \theta \le \pi$ and the *x*-axis.
a) Find the area of *R*.
b) Show the polar curve $r = \frac{4}{1 + \sin \theta}$ is $8y = 16 - x^2$ in rectangular form.
4.
Which of the following is equal to the area of the region inside the polar curve $r = 2\cos\theta$ and outside
the polar curve $r = \cos\theta$?
(A) $3\int_{0}^{\frac{\pi}{2}} \cos^2 \theta d\theta$ (B) $3\int_{0}^{\pi} \cos^2 \theta d\theta$ (C) $\frac{3}{2}\int_{0}^{\frac{\pi}{2}} \cos^2 \theta d\theta$ (D) $3\int_{0}^{\frac{\pi}{2}} \cos \theta d\theta$ (E) $3\int_{0}^{\pi} \cos \theta d\theta$
(A) $\int_{0}^{\frac{\pi}{2}} \sqrt{3 + \cos\theta} d\theta$ (B) $\int_{0}^{\pi} \sqrt{3 + \cos\theta} d\theta$ (C) $2\int_{0}^{\frac{\pi}{2}} (3 + \cos\theta) d\theta$
(D) $\int_{0}^{\pi} (3 + \cos\theta) d\theta$ (E) $\int_{0}^{\frac{\pi}{2}} \sqrt{3 + \cos\theta} d\theta$

6.
The area enclosed by one petal of the 3-petaled rose curve
$$r = 4\cos(3\theta)$$
 is given by which integral?
(A) $16 \int_{-\pi/3}^{\pi/3} \cos(3\theta) d\theta$ (B) $8 \int_{-\pi/6}^{\pi/6} \cos(3\theta) d\theta$ (C) $8 \int_{-\pi/3}^{\pi/3} \cos^2(3\theta) d\theta$
(D) $16 \int_{-\pi/6}^{\pi/6} \cos(3\theta) d\theta$ (E) $8 \int_{-\pi/6}^{\pi/6} \cos^2(3\theta) d\theta$
7.
If $a \neq 0$ and $\theta \neq 0$, all of the following must represent the same point in polar coordinates *except* which ordered pair?
(A) (a, θ) (B) $(-a, -\theta)$ (C) $(-a, \theta - \pi)$ (D) $(-a, \theta + \pi)$ (E) $(a, \theta - 2\pi)$
8.
Which of the following gives the slope of the polar curve $r = f(\theta)$ graphed in the xy-plane?
(A) $\frac{dr}{d\theta}$ (B) $\frac{dy}{d\theta}$ (C) $\frac{dx}{d\theta}$ (D) $\frac{dy/d\theta}{dx/d\theta}$ (E) $\frac{dy}{dx} \cdot \frac{dr}{d\theta}$
9.
Which of the following represents the graph of the polar curve $r = 2\sec\theta$?
(b) $\frac{1}{\theta} = \frac{1}{2} + x$ (c) $\frac{1}{\theta} = \frac{1}{2} + x$ (c) $\frac{1}{\theta} = \frac{1}{\theta} + \frac$

ANSWERS

1.
a)
$$\left(\frac{6}{5}, \frac{4}{5}\right)$$

b) $A = \int_{0}^{6/5} \left(\frac{2}{3}x\right) dx + \int_{6/5}^{2} \left(\sqrt{1 - \frac{x^{2}}{4}}\right) dx \approx 0.927$
c) $r^{2} = \frac{4}{\cos^{2}\theta + 4\sin^{2}\theta}$ or $r = \frac{2}{\sqrt{\cos^{2}\theta + 4\sin^{2}\theta}}$
d) $A = \frac{1}{2} \int_{0}^{\tan^{-1}(2/3)} \left(\frac{4}{\cos^{2}\theta + 4\sin^{2}\theta}\right) d\theta \approx 0.927$

2.
a)
$$A = \frac{1}{2} \int_{\pi/2}^{3\pi/2} (\theta + \cos 3\theta)^2 d\theta \approx 19.675$$

b) $\theta \approx 3.485$
c) $\frac{dr}{d\theta} > 0$ for $(1.571, 2.207) \cup (3.028, 4.302)$. On

these intervals the radius is increasing with respect to θ , thus the curve is moving *away* from the pole on these intervals.

3.

a)
$$A = \frac{1}{2} \int_{0}^{\pi} \left(\frac{4}{1+\sin\theta}\right)^{2} d\theta \approx 10.667$$

$$r = \frac{4}{1 + \sin \theta}$$

$$r = \frac{4}{1 + y/r}$$

$$r = \frac{4r}{r + y}$$

$$r + y = 4$$

$$r = 4 - y$$

$$r^{2} = 16 - 8y + y^{2}$$

$$x^{2} + y^{2} = 16 - 8y + y^{2}$$

$$x^{2} = 16 - 8y$$

a) 29.065 b) 15.865 11. a) 0.712 b) 0.293 c) $\frac{a^2}{2} \left(\frac{\pi}{4} - \frac{1}{2}\right)$ d) 2.174 e) 33.351

Þ)

4. A 5. D 6. E

7. B 8. D

9. D

10.