AP Style Polar Questions

1. (CALCULATOR) Let S be the region in the first quadrant bounded by the two graphs $y=\frac{2}{3} x$, $y=\sqrt{1-\frac{x^{2}}{4}}$ and the x-axis The line and the curve intersect at point P.
a) Find the coordinates of P.
b) Set up and evaluate an integral expression that calculates the area of region S.
c) Find a polar equation to represent curve $y=\sqrt{1-\frac{x^{2}}{4}}$.
d) Use the polar equation in (c) to set up and evaluate an integral expression that gives the area of the region S.
2. (CALCULATOR) Let $r=\theta+\cos (3 \theta)$ for $\frac{\pi}{2} \leq \theta \leq \frac{3 \pi}{2}$, where r is measured in meters and θ is measured in radians.
a) Find the area bounded by the curve and the y-axis.
b) Find the angle θ that corresponds to the point on the curve with y-coordinate -1 .
c) For what values of $\theta, \pi \leq \theta \leq \frac{3 \pi}{2}$ is $\frac{d r}{d \theta}$ positive? What does this say about r ?
3. (CALCULATOR) Let R be the region bounded by $r=\frac{4}{1+\sin \theta}$ for $0 \leq \theta \leq \pi$ and the x-axis.
a) Find the area of R.
b) Show the polar curve $r=\frac{4}{1+\sin \theta}$ is $8 y=16-x^{2}$ in rectangular form.
4.

Which of the following is equal to the area of the region inside the polar curve $r=2 \cos \theta$ and outside the polar curve $r=\cos \theta$?
(A) $3 \int_{0}^{\frac{\pi}{2}} \cos ^{2} \theta d \theta$
(B) $3 \int_{0}^{\pi} \cos ^{2} \theta d \theta$
(C) $\frac{3}{2} \int_{0}^{\frac{\pi}{2}} \cos ^{2} \theta d \theta$
(D) $3 \int_{0}^{\frac{\pi}{2}} \cos \theta d \theta$
(E) $3 \int_{0}^{\pi} \cos \theta d \theta$
5.
(Calculator permitted) The area of the region enclosed by the polar graph of $r=\sqrt{3+\cos \theta}$ is given by which integral?
(A) $\int_{0}^{2 \pi} \sqrt{3+\cos \theta} d \theta$
(B) $\int_{0}^{\pi} \sqrt{3+\cos \theta} d \theta$
(C) $2 \int_{0}^{\pi / 2}(3+\cos \theta) d \theta$
(D) $\int_{0}^{\pi}(3+\cos \theta) d \theta$
(E) $\int_{0}^{\pi / 2} \sqrt{3+\cos \theta} d \theta$
6.

The area enclosed by one petal of the 3-petaled rose curve $r=4 \cos (3 \theta)$ is given by which integral?
(A) $16 \int_{-\pi / 3}^{\pi / 3} \cos (3 \theta) d \theta$
(B) $8 \int_{-\pi / 6}^{\pi / 6} \cos (3 \theta) d \theta$
(C) $8 \int_{-\pi / 3}^{\pi / 3} \cos ^{2}(3 \theta) d \theta$
(D) $16 \int_{-\pi / 6}^{\pi / 6} \cos (3 \theta) d \theta$
(E) $8 \int_{-\pi / 6}^{\pi / 6} \cos ^{2}(3 \theta) d \theta$
7.

If $a \neq 0$ and $\theta \neq 0$, all of the following must represent the same point in polar coordinates except which ordered pair?
(A) (a, θ)
(B) $(-a,-\theta)$
(C) $(-a, \theta-\pi)$
(D) $(-a, \theta+\pi)$
(E) $(a, \theta-2 \pi)$
8.

Which of the following gives the slope of the polar curve $r=f(\theta)$ graphed in the $x y$-plane?
(A) $\frac{d r}{d \theta}$
(B) $\frac{d y}{d \theta}$
(C) $\frac{d x}{d \theta}$
(D) $\frac{d y / d \theta}{d x / d \theta}$
(E) $\frac{d y}{d x} \cdot \frac{d r}{d \theta}$
9.

Which of the following represents the graph of the polar curve $r=2 \sec \theta$?
(A)

(B)

(C)

(D)

(E)

10. (CALCULATOR) Find the length of the curve.
a) $r=3 \sin 2 \theta$
b) $r=\cos \left(\frac{3 \theta}{2}\right)$
11. Find the indicated area.
a) common interior of $r=1+\cos \theta$ and $r=1-\cos \theta$
b) common interior of $r^{2}=\sin 2 \theta$ and $r^{2}=\cos 2 \theta$
c) common interior of $r=a \sin \theta$ and $r=a \cos \theta$ if $a>0$ and $b>0$
d) inner loop of $r=2-4 \cos \theta$
e) between the loops of $r=2-4 \cos \theta$

ANSWERS

1.

a) $\left(\frac{6}{5}, \frac{4}{5}\right)$
b) $A=\int_{0}^{6 / 5}\left(\frac{2}{3} x\right) d x+\int_{6 / 5}^{2}\left(\sqrt{1-\frac{x^{2}}{4}}\right) d x \approx 0.927$
c) $r^{2}=\frac{4}{\cos ^{2} \theta+4 \sin ^{2} \theta}$ or $r=\frac{2}{\sqrt{\cos ^{2} \theta+4 \sin ^{2} \theta}}$
d) $A=\frac{1}{2} \int_{0}^{\tan ^{-1}(2 / 3)}\left(\frac{4}{\cos ^{2} \theta+4 \sin ^{2} \theta}\right) d \theta \approx 0.927$
2.
a) $A=\frac{1}{2} \int_{\pi / 2}^{3 \pi / 2}(\theta+\cos 3 \theta)^{2} d \theta \approx 19.675$
b) $\theta \approx 3.485$
c) $\frac{d r}{d \theta}>0$ for $(1.571,2.207) \cup(3.028,4.302)$. On these intervals the radius is increasing with respect to θ, thus the curve is moving away from the pole on these intervals.
3.
a) $A=\frac{1}{2} \int_{0}^{\pi}\left(\frac{4}{1+\sin \theta}\right)^{2} d \theta \approx 10.667$
b)

$$
\begin{aligned}
& r=\frac{4}{1+\sin \theta} \\
& r=\frac{4}{1+y / r} \\
& r=\frac{4 r}{r+y} \\
& r+y=4 \\
& r=4-y \\
& r^{2}=16-8 y+y^{2} \\
& x^{2}+y^{2}=16-8 y+y^{2} \\
& x^{2}=16-8 y
\end{aligned}
$$

4. A
5. D
6. E
7. B
8. D
9. D
10.

a) 29.065
b) 15.865
11.
a) 0.712
b) 0.293
c) $\frac{a^{2}}{2}\left(\frac{\pi}{4}-\frac{1}{2}\right)$
d) 2.174
e) 33.351

