AB Mock 1 Review

1) A sphere's volume is increasing at a rate of $2 \pi \mathrm{cubic} \mathrm{cm} / \mathrm{min}$. How fast is the radius changing when the radius is 6 cm ?
2) Evaluate: $\lim _{x \rightarrow 0} \frac{\sin x \cos x}{x}$
3) Let f be the function $f(x)=2 x^{3}+x$. If $\mathrm{f}(x)$ and $g(x)$ are inverses, find $g^{\prime}(3)$.
4) Approximate $\sqrt{25.01}$ using tangent line approximation.
5) In the $x y$ plane, write an equation of the line tangent the graph of $x^{2}+x y+y^{2}=7$ at the point $(2,1)$.
6) Let f be the function defined below, where c and d are constants. If f is differetiable at $x=2$, what is the value of c and d ?
$f(x)=\left\{\begin{array}{cc}c x+d & x \leq 2 \\ x^{2}-c x & x>2\end{array}\right.$
7) Evaluate: $\lim _{h \rightarrow 0} \frac{\sec \left(\frac{\pi}{3}+h\right)-2}{h}=$
8) If $f(x)=\sqrt{x^{2}-4}$ and $g(x)=3 x-2$, find the derivative of $f(g(x))$ at $x=3$.

9)

The graph of the function f is shown above. Which of the following statements is false?
(A) $\lim _{x \rightarrow 2} f(x)$ exists.
(B) $\lim _{x \rightarrow 3} f(x)$ exists.
(C) $\lim _{x \rightarrow 4} f(x)$ exists.
(D) $\lim _{x \rightarrow 5} f(x)$ exists.
(E) The function f is continuous at $x=3$.

10)

The function f is continuous for $-2 \leq x \leq 1$ and differentiable for $-2<x<1$. If $f(-2)=-5$ and $f(1)=4$, which of the following statements could be false?
(A) There exists c, where $-2<c<1$, such that $f(c)=0$.
(B) There exists c, where $-2<c<1$, such that $f^{\prime}(c)=0$.
(C) There exists c, where $-2<c<1$, such that $f(c)=3$.
(D) There exists c, where $-2<c<1$, such that $f^{\prime}(c)=3$.
(E) There exists c, where $-2 \leq c \leq 1$, such that $f(c) \geq f(x)$ for all x on the closed interval $-2 \leq x \leq 1$.

Answers

1.) $1 / 72 \mathrm{~cm} / \mathrm{min}$
2) 1
3) $1 / 7$
4) 5.001
5) $y-1=\frac{-5}{4}(x-2)$
6) $c=2$; $d=-4$
7) $2 \sqrt{3}$
8) $\frac{7}{\sqrt{5}}$
9) C
10) B

