AP Calculus - Linear Approximations

I. Use linear approximation at $x=2$ to estimate the value of $f(a)$ for the given function. Then, state if the approximation is an overestimate or an underestimate and explain.

1. $f(x)=\frac{6}{x^{2}} ; a=1.9$
2. $\quad f(x)=x^{5} ; a=2.1$
3. $\quad f(x)=\sqrt{x+7} ; a=1.99$
II. Estimate the value of the expression using a linear approximation.
4. $\sqrt{63.9}$
5. $\sqrt[3]{-65}$
6. $(-2.98)^{3}$
III. Use the graph of g^{\prime} to approximate $\mathrm{g}(2.93)$ and $\mathrm{g}(3.1)$ given that $\mathrm{g}(3)=8$. Is the approximation an underestimate or overestimate? Explain.

IV. Use a linear approximation and the graph of f to approximate $f(1.8)$ and $f(2.1)$. Is the approximation an underestimate or overestimate? Explain.

$1 \quad 1 \frac{13}{20}=1.65$; underestimate since $f^{\prime \prime}(x)>0$ on $[1.9,2]$

2
$4 \quad 7 \frac{159}{160}$
$5 \quad-4 \frac{1}{48}$

8
$32 \frac{599}{600}$; overestimate since $f^{\prime \prime}(x)<0$ on $[1.99,2]$
$6 \quad-26 \frac{23}{50}=-26.46$
$7 \quad g(2.93) \approx 8 \frac{7}{200}=8.035 ;$ overestimate since g^{\prime} is decreasing on [2.93,3] (that is is concave down on $[2.93,3]$)
$g(3.1) \approx 7 \frac{19}{20}=7.95$; overestimate since g^{\prime} is decreasing on $[3,3.1]$ (that is g is concave down on $[3,3.1])$
40; underestimate since $f^{\prime \prime}(x)>0$ on $[2,2.1]$
$f(1.8) \approx 0.8$; overestimate since f is concave down on $[1.8,2]$
$f(2.1) \approx 1.1$; overestimate since f is concave down $[2,2.1]$

