Lagrange Error Bound

1) Let f be a function with 5 derivatives on the interval $[2,3]$. Assume $\left|f^{(5)}(x)\right|<0.2$ for all x in the interval $[2,3]$ and that a fourth-degree Taylor polynomial for f at $c=2$ is used to estimate $f(3)$.
a. How accurate is this approximation? Round your answer to five decimal places.
b. Suppose that $P_{4}(3)=1.763$. Use your answer from part (a) to find an interval in which $f(3)$ must reside.
c. Could $f(3)=1.778$? Explain your reasoning.
d. Could $f(3)=1.764$. Explain your reasoning.
2) $f(x)=\sin x$
a. Find the fifth-degree Maclaurin polynomial for $f(x)=\sin x$.
b. Use the polynomial found in part (a) to approximate sin1.
c. Use Taylor's Theorem to find the maximum error for your approximation.
3) $f(x)=e^{x}$.
a. Write the fourth-degree Maclaurin polynomial for $f(x)=e^{x}$.
b. Using your answer from part (a), approximate the value of e.
c. Find a Lagrange error bound for the maximum error involved in the approximation found in part (b).
4) The function has derivatives of all orders for all real number x. Assume that $f(2)=6, f^{\prime}(2)=4$, $f^{\prime \prime}(2)=-7$ and $f^{\prime \prime \prime}(2)=8$.
a. Write the third-degree Taylor polynomial for f about $x=2$, and use it to approximate $f(2.3)$.
b. The fourth derivative of f satisfies the inequality $\left|f^{(4)}(x)\right| \leq 9$ for all x. Use the Lagrange error bound on the approximation of $f(2.3)$ found in part (a) to find an interval $[\mathrm{a}, \mathrm{b}]$ such that $a \leq f(2.3) \leq b$.
c. Based on the information above, could $f(2.3)=6.992$? Explain your reasoning.
5)

Let $f(x)=\sin \left(x^{2}\right)+\cos x$. The graph of $y=\left|f^{(5)}(x)\right|$ is shown above.
(a) Write the first four nonzero terms of the Taylor series for $\sin x$ about $x=0$, and write the first four nonzero terms of the Taylor series for $\sin \left(x^{2}\right)$ about $x=0$.
(b) Write the first four nonzero terms of the Taylor series for $\cos x$ about $x=0$. Use this series and the series for $\sin \left(x^{2}\right)$, found in part (a), to write the first four nonzero

terms of the Taylor series for f about $x=0$.
(c) Find the value of $f^{(6)}(0)$.
(d) Let $P_{4}(x)$ be the fourth-degree Taylor polynomial for f about $x=0$. Using information from the graph of $y=\left|f^{(5)}(x)\right|$ shown above, show that $\left|P_{4}\left(\frac{1}{4}\right)-f\left(\frac{1}{4}\right)\right|<\frac{1}{3000}$.
6) Let $f(x)=e^{x / 2}$. If the second-degree Maclaurin polynomial for f is used to approximate f on the interval $[0,2]$, what is the Lagrange error bound for the maximum error on the interval [0,2]?
a. 0.028
b. 0.113
c. 0.453
d. 0.499
e. 0.517
7) Let f be a function having 5 derivatives on the interval $[2,2.9]$ and assume that $\left|f^{(5)}(x)\right| \leq 0.8$ for all x in the interval $[2,2.9]$. If the fourth-degree Taylor polynomial for f about $x=2$ is used to approximate f on the interval $[2,2.9]$, what is the Lagrange error bound for the maximum error on the interval [2, 2.9]?
a. 0.004
b. 0.011
c. 0.022
d. 0.033
e. 0.044

ANSWERS

1)

a) Max Error $=1 / 600$
b) $1.761 \leq f(3) \leq 1.765$
c) No, since 1.778 does not fall in the interval found in part (b), the IVT does not guarantee 1.778 to be a possible value of $f(3)$.
d) Yes, since 1.764 does fall in the interval found in part (b), the IVT does guarantee 1.764 to be a possible value of $f(3)$.
2)
a) $P_{5}(x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}$
b) $101 / 120 \approx 0.842$
c) Max Error $=1 / 720$
3)
a) $P_{4}(x)=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}$
b) $65 / 24 \approx 2.708$
c) $1 / 40$ or e/120
4)
a)
$P_{3}(x)=6+4(x-2)-\frac{7(x-2)^{2}}{2!}+\frac{8(x-2)^{3}}{3!}$
$f(2.3) \approx P_{3}(2.3)=6.921$
b) $6.918 \leq f(2.3) \leq 6.924$
d) No, since 6.992 does not fall in the interval found in part (b), the IVT does not guarantee 6.992 to be a possible value of $f(2.3)$.
5)
a) $\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots$ $\sin x^{2}=x^{2}-\frac{x^{6}}{3!}+\frac{x^{10}}{5!}-\frac{x^{14}}{7!}+\ldots$
b) $\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots$
$f(x)=1+\frac{x^{2}}{2}+\frac{x^{4}}{24}-\frac{121 x^{6}}{720}+\ldots$
c) $f^{6}(0)=-121$
d) Max Error $=\frac{1}{3072}$
6) C
7) A

