Keys to Success Things to remember for the AP Test...

About the Test:

- 1. MC Calculator Usually only 5 out of 17 questions actually require calculators.
- 2. Free-Response Tips
 - a. You get 2 booklets write <u>all work in the answer booklet</u> (it is white on the inside)...the colored paper with the question WILL NOT be seen by the graders!
 - b. Explain everything *clearly!*
 - c. If you are using a justification/reason/explanation from Part A or B, use an arrow.
 - d. UNITS are important!
 - e. Cross out work that you do not want to be read. Do not erase!
 - f. A justification is a mathematical explanation AND/OR a written explanation.
 - g. Do NOT use rounded answers in later parts of a problem. Store these answers in your calculator.
 - h. If you don't know something MAKE IT UP!
 - i. Even if you use your calculator, you must show your work. Do NOT use calculator jargon in your work!
 - j. Be sure you have answered all parts of the question.
 - ** MC check answers backwards (plug in the answer choices)
 - ** FR they are NOT in order from easy to hard; however MC tends to be!
- 3. Make sure your calculator is in RADIAN mode.

4. Always round to 3 decimal places, unless otherwise specified.

Top Student Errors

- 1. f''(x) = 0 implies (x, f(x)) is a point of inflection.
- 2. f'(x) = 0 implies f(x) has relative extrema at (x, f(x)).

3. Average rate of change of
$$f(x)$$
 on [a, b] is $\displaystyle rac{1}{b-a}\int\limits_a^b f(x)dx$.

- 4. Volume by washers is $\pi \int_{a}^{b} (R-r)^2 dx$
- 5. Separable differential equations can be solved without separating the variables.
- 6. Omitting the constant of integration.
- 7. Not showing setup work on the calculator portion.

8. Universal logarithmic antidifferntiation:
$$\int \frac{1}{f(x)} dx = \ln |f(x)| + C$$

- 9. Forgetting to use chain rule.
- 10. Using calculator jargon in your work.
- 11. Not answering all parts of a question.
- 12. Forgetting the units.
- 13. Not rounding to three decimal places.

TIPS:

1. The maximum number of horizontal asymptotes is always 2. <u>Remember it is an END BEHAVIOR of the</u> function and the answers are ALWAYS "y ="the number that the limit is approaching: If $\lim_{x \to 0} f(x) = h$ AND $\lim_{x \to 0} f(x) = c$ the HAs are y = h and y = c

f
$$\lim_{x \to \infty} f(x) = b$$
, AND $\lim_{x \to -\infty} f(x) = c$, the HAs are $y = b$ and $y = c$

2. Vertical Asymptotes: After simplifying/ reducing the rational function to the lowest terms: Find the candidates by setting the <u>denominator</u> equal to zero and then find the limits:

$$\lim_{x \to a^-} f(x), \text{ AND } \lim_{x \to a^+} f(x), \text{ The limits must equal } \pm \infty. \text{ If so the VA is } x = a$$

3. <u>Label</u> the number line for f'(x) or g''(x). REMEMBER THAT NUMBER LINES <u>ARE NOT</u> JUSTIFICATIONS. YOU MUST WRITE A SENTENCE.

4. <u>Recognize:</u>

$$\lim_{\Delta x \to 0} \frac{g(x + \Delta x) - g(x)}{\Delta x}$$

 $\Delta x \rightarrow 0$ This is the definition of the derivative!

- Study the SECOND DERIVATIVE TEST 5.
 - a. If f''(c) > 0, f(c) is a relative MINIMUM value
 - b. If f''(c) < 0, f(c) is a relative MAXIMUM value
 - c. If f''(c) = 0, the test FAILS. You must resort to the first derivative test and use a number line.
- 6. Volume By Rotation
 - a. Rotation about a horizontal axis y = c, f(x) is the farther function and g(x) is the closer function:

$$\pi \int_{x_1}^{x_2} \left[\left(f(x) - c \right)^2 - \left(g(x) - c \right)^2 \right] dx$$

b. Rotation about a vertical axis x = d, f(x) is the right function and g(x) is the left function:

$$\pi \int_{y_1}^{y_2} \left[\left(f(y) - d \right)^2 - \left(g(y) - d \right)^2 \right] dy$$

- Volume by Cross Section DRAW A PICTURE. You may want to memorize the formulas, especially the triangle 7. formulas.
- Particle Motion Position/ Velocity/ Acceleration 8.
 - PVAJ:
 - Position: x(t)0
 - Velocity: x'(t) = v(t)0
 - Acceleration: x''(t) = v'(t) = a(t)0
 - SPEED
 - INCREASING velocity and acceleration have the same signs 0
 - DECREASING velocity and acceleration have opposite signs 0
 - Initially: t=o
 - At Rest: v(t)=o
 - Particle Moving Right: v(t)>o
 - Particle Moving Left: v(t)<0 •

• Average velocity on [a, b]:
$$\frac{x(b) - x(a)}{b - a}$$
 or $\frac{1}{b - a} \int_{a}^{b} v(t) dt$

- Instantaneous velocity at t=a: v(a) = x'(a)
- Area Accumulation Functions: $w(x) = \int_{0}^{g(x)} f(t) dt$
 - a. To find the derivative: w'(x) = f(g(x))g'(x) (2ND FTC)
- 10. Given a graph of f and $g(x) = \int f(t)dt$:
 - The graph f is the graph of $\,g^{\prime}$ а.
 - $\int f(t)dt$ is the AREA under the curve. Ь.

c. To evaluate g(x), evaluate the integral by using geometric shapes. 11. Piecewise Functions – find the derivative of each piece INDIVIDUALLY

$$f(x) = |x|$$

ex:
$$f(x) = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$$

ALWAYS split the absolute value!! 12. For the range of any function, use the absolute extrema.

13. Net Distance:
$$\int_{a}^{b} v(t) dt$$

14. Total Distance: $\int_{a}^{b} |v(t)| dt$, OR find when the velocity equals o. Find the position at endpoints and at points were

the velocity equals o, and sum the difference in distances.

15. Derivative Approximations

×	f(x)
а	e
Ь	f
d	g
$-f(\overline{b})$	

To approximate $f'(c) \approx \frac{f(d) - f(b)}{d - b}$

16. Tangent Line Approximations

1. Write the tangent line at the given point: (a, f(a))

$$f'(a) = f'(a)(x - a)$$

2. Then plug in the point $x = x_1$

$$y = f'(a)(x_1 - a) + f(a)$$

- 17. Absolute extrema Compare the y-values of the relative extrema AND the endpoints. If there is only 1 critical number then the critical number is both a relative and absolute extrema.
- 18. CCU The tangent line approximation is LESS; CCD The tangent line approximation is GREATER

19. If
$$\int_{a}^{b} f(x)dx = F(a) - F(b)$$
:
a. $\int_{a}^{b} f(x)dx$ is the area under the curve of f(x)
b. $\int_{b}^{a} f(x)dx$ is the negative if the area is below the x-axis