1st derivative and Test for Concavity Explanations
$f(x)=4 x^{3}-2 x^{2}$
1st derivative test: to find relative maximums and/or minimums and intervals where $f(x)$ is increasing or decreasing.
$f^{\prime}(x)=12 x^{2}-4 x \quad$ Find the derivative
$0=4 x(3 x-1)$ Find where the derivative is zero or undefined.

fis increasing on $(-\infty, 0)$ and $(1 / 3, \infty)$ because $f^{\prime}>0$ on these intervals.
fis decreasing on $(0,1 / 3)$ because $f^{\prime}<0$ on these intervals.
There is a relative maximum at $(0,0)$ because the sign of f^{\prime} is changing from positive to negative at this point.
There is a relative minimum at $(1 / 3,-.074)$ because the sign of f^{\prime} is changing from negative to positive at this point.

Test for concavity and P.O.I.: to find where $f(x)$ is concave up and/or down and finding the points of inflection

$f^{\prime \prime}(x)=24 x-4 \quad$ Find the second derivative
$0=24 x-4 \quad$ Find where the second derivative is zero or undefined.
$0=4(6 x-1)$

The function is concave down on the interval $(-\infty, 1 / 6)$ because $f^{\prime \prime}<0$ on this interval. The function is concave up on the interval $(1 / 6, \infty)_{\text {because }} f^{\prime \prime}>0$ on this interval.

There is a point of inflection at $\left(1 / 6,-.037\right.$) because $f^{\prime \prime}$ changes signs at this point.

