$f(x) = 4x^3 - 2x^2$

<u>lst derivative test</u>: to find relative maximums and/or minimums and intervals where f(x) is increasing or decreasing.

 $f'(x) = 12x^2 - 4x$ Find the derivative

0 = 4x(3x-1) Find where the derivative is zero or undefined.

f is increasing on $(-\infty,0)$ and $(1/3,\infty)$ because f' > 0 on these intervals.

f is decreasing on (0,1/3) because f' < 0 on these intervals.

There is a relative maximum at (0, 0) because the sign of f' is changing from positive to negative at this point.

There is a relative minimum at (1/3, -.074) because the sign of f' is changing from negative to positive at this point.

<u>Test for concavity and P.O.I.</u>: to find where f(x) is concave up and/or down and finding the points of inflection

f''(x) = 24x - 4 Find the second derivative

0 = 24x - 4 Find where the second derivative is zero or undefined.

0 = 4(6x - 1)

The function is concave down on the interval $(-\infty,1/6)$ because f'' < 0 on this interval. The function is concave up on the interval $(1/6,\infty)$ because f'' > 0 on this interval. There is a point of inflection at (1/6, -.037) because f'' changes signs at this point.