Tabular data: IVT, MVT, and Rolle's

Let s(t) be a differentiable function on [0, 9] where t is in seconds and s(t) is measured in meters.

t	0	1	4	9
s(t)	3	-2	2	3

- 1. Estimate s'(1). Include units of measure.
- 2. Estimate s'(9). Include units of measure.
- 3. For 0 < t < 9, how many time(s) must s(t) = 0? Justify your answer.
- 4. For 0 < t < 9, must there be a time t when s'(t) = 0? Justify your answer.
- 5. For 0 < t < 9, must there be a time t when s(t) = 4? Justify your answer.
- 6. For 0 < t < 4, must there be a time t when s'(t) = -1/4? Justify your answer.
- 7. For 0 < t < 1, must there be a time t where s'(t) = 4? Justify your answer.

A car travels on a straight track. During the time interval [0, 60] seconds, the car's velocity v, measured in feet per second, is a differentiable function.

t	0	15	25	30	35	50	60
v(t)	1	5	2	1	2	4	2

- 8. Estimate v'(40). Include units of measure.
- 9. For 30 < t < 50, must there be a time t where v(t) = 3? Justify your answer.
- 10. For 0 < t < 30, how many time(s) must v(t) = 3? Justify your answer.
- 11. For 0 < t < 30, how many time(s) must v'(t) = 0? Justify your answer.
- 12. For 50 < t < 60, must there be a time t when v'(t) = -1/5? Justify your answer.
- 13. For 0 < t < 25, must there be a time t when v'(t) = 2? Justify your answer.

Answers (These are only the answers, not the full justifications)

- 1 -1/4 m/sec (Answers may vary)
- 2 1/5 m/sec (Answers may vary)
- 3 IVT; at least twice
- 4 Rolle's; at least once
- 5 No
- 6 MVT; at least once
- 7 No
- 8 2/15 ft/sec² (Answers may vary)
- 9 IVT; at least once
- 10 IVT; at least twice
- Rolle's; at least 1 time
- MVT; at least once
- 13 No