Taylor Series \& Polynomials MC Review

Select the correct capital letter. NO CALCULATOR unless specified otherwise.
\qquad 1. Let $T_{5}(x)=3 x^{2}-5 x^{3}+7 x^{4}+3 x^{5}$ be the fifth-degree Taylor polynomial for the function f about $x=0$. What is the value of $f^{\prime \prime \prime}(0)$?
(A) -30
(B) -15
(C) -5
(D) $-\frac{5}{6}$
(E) $-\frac{1}{6}$
2. For what integer $k, k>1$, will both $\sum{n=1}^{\infty} \frac{(-1)^{k n}}{n}$ and $\sum_{n=1}^{\infty}\left(\frac{k}{4}\right)^{n}$ converge?
(A) 6
(B) 5
(C) 4
(D) 3
(E) 2
3. (Calculator Permitted) The Taylor series for $\ln x$, centered at $x=1$, is $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{(x-1)^{n}}{n}$. Let f be the function given by the sum of the first three nonzero terms of this series. The maximum value of $|\ln x-f(x)|$ for $0.3 \leq x \leq 1.7$ is which of the following?
(A) 0.030
(B) 0.039
(C) 0.145
(D) 0.153
(E) 0.529
4. What are the values of x for which the series $\sum{n=1}^{\infty} \frac{(x+2)^{n}}{\sqrt{n}}$ converges?
(A) $-3<x<-1$
(B) $-3 \leq x<-1$
(C) $-3 \leq x \leq-1$
(D) $-1 \leq x<1$
(E) $-1 \leq x \leq 1$
5. (Calculator Permitted) The graph of the function represented by the Maclaurin series $1-x+\frac{x^{2}}{2!}-\frac{x^{3}}{3!}+\cdots+\frac{(-1)^{n} x^{n}}{n!}+\cdots$ intersects the graph of $y=x^{3}$ at $x=$
(A) 0.773
(B) 0.865
(C) 0.929
(D) 1.000
(E) 1.857
\qquad 6. Which of the following sequences converge?
I. $\left\{\frac{5 n}{2 n-1}\right\}$
II. $\left\{\frac{e^{n}}{n}\right\}$
III. $\left\{\frac{e^{n}}{1+e^{n}}\right\}$
(A) I only
(B) II only
(C) I and II only
(D) I and III only
(E) I, II, and III
\qquad 7. What is the approximation of the value of $\sin 1$ obtained by using the fifth-degree Taylor polynomial about $x=0$ for $\sin x$?
(A) $1-\frac{1}{2}+\frac{1}{24}$
(B) $1-\frac{1}{2}+\frac{1}{4}$
(C) $1-\frac{1}{3}+\frac{1}{5}$
(D) $1-\frac{1}{4}+\frac{1}{8}$
(E) $1-\frac{1}{6}+\frac{1}{120}$
8. Which of the following series converge?
I. $\sum_{n=1}^{\infty} \frac{n}{n+2}$
II. $\sum_{n=1}^{\infty} \frac{\cos (n \pi)}{n}$
III. $\sum_{n=1}^{\infty} \frac{1}{n}$
(A) None
(B) II only
(C) III only
(D) I and II only
(E) I and III only
\qquad 9. If $\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{d x}{x^{p}}$ is finite, then which of the following must be true?
(A) $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ converges
(B) $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ diverges
(C) $\sum_{n=1}^{\infty} \frac{1}{n^{p-2}}$ converges
(D) $\sum_{n=1}^{\infty} \frac{1}{n^{p-1}}$ converges
(E) $\sum_{n=1}^{\infty} \frac{1}{n^{p+1}}$ diverges
10. If $\sum{n=0}^{\infty} a_{n} x^{n}$ is a Taylor series that converges to $f(x)$ for all real x, then $f^{\prime}(1)=$
(A) 0
(B) a_{1}
(C) $\sum_{n=0}^{\infty} a_{n}$
(D) $\sum_{n=1}^{\infty} n a_{n}$
(E) $\sum_{n=1}^{\infty} n a_{n}^{n-1}$
11. What is the value of $\sum{n=1}^{\infty} \frac{2^{n+1}}{3^{n}}$?
(A) 1
(B) 2
(C) 4
(D) 6
(E) The series diverges
12. The Maclaurin series for $\frac{1}{1-x}$ is $\sum_{n=0}^{\infty} x^{n}$. Which of the following is a power series expansion for $\frac{x^{2}}{1-x^{2}}$?
(A) $1+x^{2}+x^{4}+x^{6}+x^{8}+\cdots$
(B) $x^{2}+x^{3}+x^{4}+x^{5}+\cdots$
(C) $x^{2}+2 x^{3}+3 x^{4}+4 x^{5}+\cdots$
(D) $x^{2}+x^{4}+x^{6}+x^{8}+\cdots$
(E) $x^{2}-x^{4}+x^{6}-x^{8}+\cdots$
_1 13. A function f has a Maclaurin series given by $\frac{x^{4}}{2!}+\frac{x^{5}}{3!}+\frac{x^{6}}{4!}+\cdots+\frac{x^{n+3}}{(n+1)!}+\cdots$. Which of the following is an expression for $f(x)$?
(A) $-3 x \sin x+3 x^{2}$
(B) $-\cos \left(x^{2}\right)+1$
(C) $-x^{2} \cos x+x^{2}$
(D) $x^{2} e^{x}-x^{3}-x^{2}$
(E) $e^{x^{2}}-x^{2}-1$
14. Which of the following series diverge?
I. $\sum_{n=0}^{\infty}\left(\frac{\sin 2}{\pi}\right)^{n}$
II. $\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}}$
III. $\sum_{n=1}^{\infty}\left(\frac{e^{n}}{e^{n}+1}\right)$
(A) III only
(B) I and II only
(C) I and III only
(D) II and III only
(E) I, II, and III
15. What is the coefficient of x^{2} in the Taylor series for $\frac{1}{(1+x)^{2}}$ about $x=0$?
(A) $\frac{1}{6}$
(B) $\frac{1}{3}$
(C) 1
(D) 3
(E) 6
_16. The sum of the infinite geometric series $\frac{3}{2}+\frac{9}{16}+\frac{27}{128}+\frac{81}{1024}+\cdots$ is
(A) 1.60
(B) 2.35
(C) 2.40
(D) 2.45
(E) 2.50
17. What are all values of x for which the series $\sum{n=1}^{\infty} \frac{(x-2)^{n}}{n 3^{n}}$ converges?
(A) $-3 \leq x \leq 3$
(B) $-3<x<3$
(C) $-1<x \leq 3$
(D) $-1 \leq x \leq 5$
(E) $-1 \leq x<5$
\qquad 18. The Taylor series for $\sin x$ about $x=0$ is $x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots$. If f is a function such that $f^{\prime}(x)=\sin \left(x^{2}\right)$, then the coefficient of x^{7} in the Taylor series for $f(x)$ about $x=0$ os
(A) $\frac{1}{7!}$
(B) $\frac{1}{7}$
(C) 0
(D) $-\frac{1}{42}$
(E) $-\frac{1}{7!}$
19. $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n}}{n!}$ is the Taylor series about zero for which of the following functions?
(A) $\sin x$
(B) $\cos x$
(C) e^{x}
(D) e^{-x}
(E) $\ln (1+x)$
20. For what values of x does the series $1+2^{x}+3^{x}+4^{x}+\cdots+n^{x}+\cdots$ converge?
(A) No values of x
(B) $x<-1$
(C) $x \geq-1$
(D) $x>-1$
(E) All values of x
__ 21. The complete interval of convergence of the series $\sum_{k=1}^{\infty} \frac{(x+1)^{k}}{k^{2}}$ is
(A) $0<x<2$
(B) $0 \leq x \leq 2$
(C) $-2<x \leq 0$
(D) $-2 \leq x<0$
(E) $-2 \leq x \leq 0$
22. For $-1<x<1$, if $f(x)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^{2 n-1}}{2 n-1}$, then $f^{\prime}(x)=$
(A) $\sum_{n=1}^{\infty}(-1)^{n+1} x^{2 n-2}$
(B) $\sum_{n=1}^{\infty}(-1)^{n} x^{2 n-2}$
(C) $\sum_{n=1}^{\infty}(-1)^{2 n} x^{2 n}$
(D) $\sum_{n=1}^{\infty}(-1)^{n} x^{2 n}$
(E) $\sum_{n=1}^{\infty}(-1)^{n+1} x^{2 n}$
22. The coefficient of x^{3} in the Taylor series fo $e^{3 x}$ about $x=0$ is
(A) $\frac{1}{6}$
(B) $\frac{1}{3}$
(C) $\frac{1}{2}$
(D) $\frac{3}{2}$
(E) $\frac{9}{2}$
23. $\sum{i=n}^{\infty}\left(\frac{1}{3}\right)^{i}=$
(A) $\frac{3}{2}-\left(\frac{1}{3}\right)^{n}$
(B) $\frac{3}{2}\left[1-\left(\frac{1}{3}\right)^{n}\right]$
(B) $\frac{3}{2}\left(\frac{1}{3}\right)^{n}$
(D) $\frac{2}{3}\left(\frac{1}{3}\right)^{n}$
(E) $\frac{2}{3}\left(\frac{1}{3}\right)^{n+1}$
24. Which of the followign series converge?
I. $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{2 n+1}$
II. $\sum_{n=1}^{\infty} \frac{1}{n}\left(\frac{3}{2}\right)^{n}$
III. $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$
(A) I only
(B) II only
(C) III only
(D) I and III only
(E) I, II, and III
__ 25. If $s_{n}=\left(\frac{(5+n)^{100}}{5^{n+1}}\right)\left(\frac{5^{n}}{(4+n)^{100}}\right)$, to what number does the sequence $\left\{s_{n}\right\}$ converge?
(A) $\frac{1}{5}$
(B) 1
(C) $\frac{5}{4}$
(D) $\left(\frac{5}{4}\right)^{100}$
(E) The sequence does not converge
26. (Calculator Permitted) If $f(x)=\sum_{k=1}^{\infty}\left(\sin ^{2} x\right)^{k}$, then $f(1)$ is
(A) 0.369
(B) 0.585
(C) 2.400
(D) 2.426
(E) 3.426
27. Let the function given by $f(x)=\ln (3-x)$. The third-degree Taylor polynomial for f about $x=2$ is
(A) $-(x-2)+\frac{(x-2)^{2}}{2}-\frac{(x-2)^{3}}{3}$
(B) $-(x-2)-\frac{(x-2)^{2}}{2}-\frac{(x-2)^{3}}{3}$
(C) $(x-2)+(x-2)^{2}+(x-2)^{3}$
(D) $(x-2)+\frac{(x-2)^{2}}{2}+\frac{(x-2)^{3}}{3}$
(E) $(x-2)-\frac{(x-2)^{2}}{2}+\frac{(x-2)^{3}}{3}$
28. (Calculator Permitted) Suppose a function f is approximated with a fourth-degree Taylor polynomial about $x=1$. If the maximum value of the fifth derivative between $x=1$ and $x=3$ is 0.01 , that is, $\left|f^{(5)}(x)\right|<0.01$, then the maximum error incurred using this approximation to compute $f(3)$ is
(A) 0.054
(B) 0.0054
(C) 0.26667
(D) 0.02667
(E) 0.00267

