Graphing Quadratic Functions In Standard Form

Fill in the blank:

1. The graph of a quadratic function is called a(n) \qquad _.
2. The \qquad divides the parabola into mirror images and passes through the
\qquad .
3. The lowest or highest point on a parabola is always at the \qquad .

For each function:
a) Sketch the graph.
b) State the vertex.
c) State the axis of symmetry.
d) Tell whether the function has a maximum or minimum value. State this value.
e) State the domain and range in SET notation.
4. $y=-x^{2}-6 x-4$
5. $y=3 x^{2}$
6. $y=\frac{3}{2} x^{2}-3 x+6$

Sketch the graphs of $y=2 x^{2}, y=x^{2}, y=0.25 x^{2}$ and $y=-x^{2}$ on the same coordinate plane.
7. Which graph is the widest?
8. Make a conjecture about what causes the graph of a parabola to be wider or narrower than the parent function.

WITHOUT graphing, consider the function $y=4 x^{2}-24 x+11$.
9. Determine whether the function has a minimum or maximum point. How do you know?
10. State the maximum or minimum value of the function.
11. State the domain and range of the function in INTERVAL notation.

The table below represents some points on the graph of a quadratic function.

x	y
-4	-43
-2	-11
1	7
3	-1
a	-11
6	-43
7	-65

12. What are the coordinates of the vertex?
13. Determine the value of a.
14. Does the function have a maximum or minimum value? How do you know?
15. What is the effect on the graph of the function $y=x^{2}+2$ when it is changed to $y=x^{2}-3$?
a) The graph widens
b) The graph narrows
c) The graph opens down
d) The vertex moves down
16. The points $(10,7)$ and $(-2,7)$ lie on the graph of a parabola. Explain how you can use these two points to find the axis of symmetry. Then state the axis of symmetry.

ANSWERS

1. parabola	2. axis of symmetry; vertex	3. vertex
4. a) b) $(-3,5)$ c) $x=-3$ d) Maximum, 5 e) Domain: $\{x \mid x \in R\}$ Range: $\{y \mid y \leq 5\}$	5. a) b) $(0,0)$ c) $x=0$ d) Minimum, o e) Domain: $\{x \mid x \in R\}$ Range: $\{y \mid y \geq 0\}$	6. a) b) $(1,9 / 2)$ c) $x=1$ d) Minimum, $9 / 2$ e) Domain: $\{x \mid x \in R\}$ Range: $\left\{y \left\lvert\, y \geq \frac{9}{2}\right.\right\}$
7. $y=0.25 x^{2}$	8. For a quadratics $y=a x^{2}+b x+c$ when $a>1$ the graph is narrower than the parent function and when $a<1$ the graph is wider than the parent function.	
9. The function has a minimum point since $a=4>0$	10. Minimum, -25	11. Domain: $(-\infty, \infty)$ Range: [$-25, \infty$)
12. $(1,7)$	13. $a=4$	14. The function has a maximum value since the vertex has a y-value of 7 and all of the other y-values are smaller.
15. d	16. $x=4$, Since both points have the same y value, the x-value of the axis of symmetry must lie in the middle of the given x-values.	

