Function Analysis Notes

Increasing and Decreasing

A function is "increasing" when the **y-values** increases:

(More simply, as you look at the graph from left to right, the graph goes up.)

A function is "increasing" when the **y-values** decrease as the **x-values** increases:

(More simply, as you look at the graph from left to right, the graph goes <u>down</u>.)

*When stating the open intervals on which a function is increasing or decreasing do NOT include turning points or endpoints.

Ex 1) Determine the open intervals on which the graph is increasing and decreasing.

Jec: (-00,3)

inc: (-3,0) U (2,00) del: (0,2)

inc: (-00,-2) U(2,0) dec: (0,2) U(2,0)

Positive and Negative

The "positive" regions of a function are those intervals where the function is above the x-axis. Simply, it is where the y-values are positive (not zero).

The "negative" regions of a function are those intervals where the function is **below the x-axis**. Simply, it is where the **y-values** are negative (not zero).

Some functions are positive over their entire domain (All y-values above the x-axis.)

Some functions are negative over their entire domain.

(All y-values below the x-axis.)

Some functions have both positive and negative regions. (y-values are above and below the x-axis)

*When stating the open intervals on which a function is positive or negative do NOT include zeros.

+: (-0,1) V(5,00) +: (-3,2) V(2,00)

-: (1,5)

-: Never

+: (-3,-2) (2,3)

-: 1-00,-3) U(-2,2) U(3,00)

Ex 3) Sketch the function. Then determine the open intervals on which the function is increasing, decreasing, positive and negative.

a) $y = \ln(x-2)$

inc: (2,00)

dec: never

+: (3,00)

-: (2,3)

b) y = -

inc: (-3,00)

dec: (-00,-3)

t: never

-: (-00,-3)V(-3,00)

c) $y = x^2 - 4x + 7$

Vertex: $X = \frac{4}{2(1)} = 2$

Y=(2)2-4(2)+7=3

dec: (-00,2)

-: never