Rectilinear AP?s

1979 AB4/BC1

A particle moves along a line so that at any time t its position is given by $x(t) = 2\pi t + \cos 2\pi t$.

- (a) Find the velocity at time t.
- (b) Find the acceleration at time t.
- (c) What are all values of t, $0 \le t \le 3$, for which the particle is at rest?

1981 AB6/BC4

A particle moves along the *x*-axis so that at time *t* its position is given by $x(t) = \sin(\pi t^2)$ for $-1 \le t \le 1$.

- (a) Find the velocity at time t.
- (b) Find the acceleration at time t.
- (c) For what values of t does the particle change direction?
- (d) Find all values of t for which the particle is moving to the left.

1983 AB2

A particle moves along the *x*-axis so that at time *t* its position is given by $x(t) = t^3 - 6t^2 + 9t + 11$.

- (a) What is the velocity of the particle at t = 0?
- (b) During what time intervals is the particle moving to the left?

1969 AB2/BC2

A particle moves along the x-axis in such a way that its position at time t is given by $x = 3t^4 - 16t^3 + 24t^2$ for $-5 \le t \le 5$.

- (a) Determine the velocity and acceleration of the particle at time t.
- (b) At what values of t is the particle at rest?
- (c) At what values of t does the particle change direction?
- (d) What is the velocity when the acceleration is first zero?

1975 AB2

A particle moves along the x-axis in such a way that its position at time t for $t \ge 0$ is given by $x = \frac{1}{3}t^3 - 3t^2 + 8t$.

- (a) Show that at time t = 0, the particle is moving to the right.
- (b) Find all values of t for which the particle is moving to the left.
- (c) What is the position of the particle at time t = 3?

ANSWERS

1979 AB4/BC1

- a. $v(t) = 2\pi 2\pi \sin(2\pi t)$
- b. $a(t) = -4\pi^2 \cos(2\pi t)$
- c. $t = \frac{1}{4}, \frac{5}{4}, \frac{9}{4}$. At these times the particle is at rest because v(t) = 0

1981 AB6/BC4

- a. $v(t) = 2\pi t \cos(\pi t^2)$
- b. $a(t) = 2\pi \cos(\pi t^2) 4\pi^2 t^2 \sin(\pi t^2)$
- c. $t = 0, \pm \frac{\sqrt{2}}{2}$. The particle changes directions at these times because v(t) changes signs.
- d. $\left(-\frac{\sqrt{2}}{2},0\right) \cup \left(\frac{\sqrt{2}}{2},1\right)$. The particle moves to the left on these intervals because v(t) < 0.

1983 AB2

- a. v(0) = 9
- b. (1,3) The particle moves to the left on these intervals because v(t) < 0.

1969 AB2/BC2

- a. $v(t) = 12t^3 48t^2 + 48t$, $a(t) = 36t^2 96t + 48$
- b. t = 0.2. At these times the particle is at rest because v(t) = 0.
- c. t = 0. The particle changes directions at these times because v(t) changes signs.
- d. a(t) = 0 when $t = \frac{2}{3}, 2$. So, $v(\frac{2}{3}) = \frac{128}{9}$

1975 AB2

- a. v(0) = 8 > 0, Therefore the particle is moving right at t = 0.
- b. The particle moves left on the time interval (2, 4) because v(t) < 0.
- c. x(3) = 6.